[1]

Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, Al-Ouqaili MTS, Chinedu Ikem J, et al. 2022. Antibiotic resistance: the challenges and some emerging strategies for tackling a global menace. Journal of Clinical Laboratory Analysis 36:e24655

doi: 10.1002/jcla.24655
[2]

Nature Reviews Microbiology. 2024. Stronger commitment and faster action against antimicrobial resistance. Nature Reviews Microbiology 22:589−590

doi: 10.1038/s41579-024-01089-z
[3]

Vikesland P, Garner E, Gupta S, Kang S, Maile-Moskowitz A, et al. 2019. Differential drivers of antimicrobial resistance across the world. Accounts of Chemical Research 52:916−924

doi: 10.1021/acs.accounts.8b00643
[4]

Xin R, Yang F, Zeng Y, Zhang M, Zhang K. 2025. Analysis of antibiotic resistance genes in livestock manure and receiving environment reveals non-negligible risk from extracellular genes. Environmental Science-Processes & Impacts 27:1331−1340

doi: 10.1039/d4em00570h
[5]

Bi W, Butardo V Jr, Sha G, Zhang H, Wu X, et al. 2025. Microbial degradation and pollutant control in aerobic composting and anaerobic digestion of organic wastes: a review. Waste Management 204:114894

doi: 10.1016/j.wasman.2025.114894
[6]

Ukachi UO, Rajasekar A, Gao B, Shen W. 2025. Dynamics and mitigation of antibiotic resistance genes during manure composting: a comprehensive review. Ecotoxicology and Environmental Safety 304:119152

doi: 10.1016/j.ecoenv.2025.119152
[7]

Kundariya N, Mohanty SS, Varjani S, Hao Ngo H, Wong JWC, et al. 2021. A review on integrated approaches for municipal solid waste for environmental and economical relevance: monitoring tools, technologies, and strategic innovations. Bioresource Technology 342:125982

doi: 10.1016/j.biortech.2021.125982
[8]

Koushal S, Arya D, Kadam GL, Parmar A, Chauhan N, et al. 2025. Vermicomposting and its role in soil health: a comprehensive review. Journal of Scientific Research and Reports 31:461−471

doi: 10.9734/jsrr/2025/v31i12789
[9]

Gómez-Brandón, Aira M, Probst M, Liu N, Zhang Z, et al. 2025. Earthworms attenuate antibiotic resistance genes and mobile genetic elements during vermicomposting of sewage sludge. Journal of Environmental Management 384:125562

doi: 10.1016/j.jenvman.2025.125562
[10]

Guo H, Li Z, Sun X, Xing M. 2024. Impact of earthworms on suppressing dissemination of antibiotic resistance genes during vermicomposting treatment of excess sludge. Bioresource Technology 406:130991

doi: 10.1016/j.biortech.2024.130991
[11]

Cao Y, Tian Y, Wu Q, Li J, Zhu H. 2021. Vermicomposting of livestock manure as affected by carbon-rich additives (straw, biochar and nanocarbon): a comprehensive evaluation of earthworm performance, microbial activities, metabolic functions and vermicompost quality. Bioresource Technology 320:124404

doi: 10.1016/j.biortech.2020.124404
[12]

Li Z, Yang F, Han B, Zhao R, Yang M, et al. 2025. Vermicomposting significantly reduced antibiotic resistance genes in cow manure even under high tetracycline concentrations. Bioresource Technology 419:132002

doi: 10.1016/j.biortech.2024.132002
[13]

Mohite DD, Chavan SS, Jadhav VS, Kanase T, Kadam MA, et al. 2024. Vermicomposting: a holistic approach for sustainable crop production, nutrient-rich bio fertilizer, and environmental restoration. Discover Sustainability 5:60

doi: 10.1007/s43621-024-00245-y
[14]

Ahmed I, Zhuang Z, Zhang D, Li P, Zhang B. 2025. Temperature-driven dynamics of intracellular and extracellular antibiotic resistance genes during aerobic composting: insights from qPCR and metagenomic analysis. Journal of Hazardous Materials 494:138519

doi: 10.1016/j.jhazmat.2025.138519
[15]

Zhao E, Li Y, Zhang J, Geng B. 2025. A review on the degradation of antibiotic resistance genes during composting of livestock manure. Toxics 13:667

doi: 10.3390/toxics13080667
[16]

Wen X, Chen M, Ma B, Xu J, Zhu T, et al. 2024. Removal of antibiotic resistance genes during swine manure composting is strongly impaired by high levels of doxycycline residues. Waste Management 177:76−85

doi: 10.1016/j.wasman.2024.01.037
[17]

Liu N, Graham DW, Zhao Y, Yang XR, Li G, et al. 2025. Role of earthworms and their excretion products in reducing antimicrobial resistance and putative pathogens during vermicomposting. Chemical Engineering Journal 512:162765

doi: 10.1016/j.cej.2025.162765
[18]

Ahmad A, Mahmood A, Ahmad S, Li W. 2025. Harnessing earthworms for sustainable waste management: insights into vermicomposting. Water, Air, & Soil Pollution 236:840

doi: 10.1007/s11270-025-08500-2
[19]

Xu P, Shu L, Yang Y, Kumar S, Tripathi P, et al. 2024. Microbial agents obtained from tomato straw composting effectively promote tomato straw compost maturation and improve compost quality. Ecotoxicology and Environmental Safety 270:115884

doi: 10.1016/j.ecoenv.2023.115884
[20]

Du H, Lu C, Latif MZ, Du J, Liu Y, et al. 2025. Thermophilic microbial agents promote the fermentation progression of spent mushroom compost and pig manure. Frontiers in Microbiology 16:1575397

doi: 10.3389/fmicb.2025.1575397
[21]

Li M, Jiang L, Li F, Zhang X, Zhao H, et al. 2025. Microbial agents assisted aerobic co-composting of sheep manure and furfural residue: maturation enhancement and microbial dynamic. Journal of Environmental Chemical Engineering 13:116122

doi: 10.1016/j.jece.2025.116122
[22]

Xu Y, Xu P, Teng H, Yang S, Lang H, et al. 2025. Short-term high-temperature pretreatment to reduce gaseous emissions and accelerate humification in food waste digestate composting: performance and mechanisms. Journal of Environmental Chemical Engineering 13:118455

doi: 10.1016/j.jece.2025.118455
[23]

Han L, Li L, Xu X, Ye W, Zhang F, et al. 2024. Utilization of short-term high temperature pretreatment for food waste composting: effects of end-products on soil properties and plant growth. Journal of Cleaner Production 438:140790

doi: 10.1016/j.jclepro.2024.140790
[24]

Yao Y, Maddamsetti R, Weiss A, Ha Y, Wang T, et al. 2022. Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection. Nature Ecology & Evolution 6:555−564

doi: 10.1038/s41559-022-01705-2
[25]

Sui Q, Chen Y, Yu D, Wang T, Hai Y, et al. 2019. Fates of intracellular and extracellular antibiotic resistance genes and microbial community structures in typical swine wastewater treatment processes. Environment International 133:105183

doi: 10.1016/j.envint.2019.105183
[26]

Das SR, Dey S, Pradhan A, Nayak BK, Venkatramaiah E, Chatterjee D. 2023. Vermicomposting as a means of removing antibiotic resistance genes (ARGs) from soil and water. In Fate of Biological Contaminants During Recycling of Organic Wastes, eds Huang K, Ahmad Bhat S, Cui G. Amsterdam: Elsevier. pp. 259−278 doi: 10.1016/B978-0-323-95998-8.00005-4

[27]

Lu XM, Lu PZ. 2019. Synergistic effects of key parameters on the fate of antibiotic resistance genes during swine manure composting. Environmental Pollution 252:1277−1287

doi: 10.1016/j.envpol.2019.06.073
[28]

Duan M, Gu J, Wang X, Li Y, Zhang S, et al. 2018. Effects of genetically modified cotton stalks on antibiotic resistance genes, intI1, and intI2 during pig manure composting. Ecotoxicology and Environmental Safety 147:637−642

doi: 10.1016/j.ecoenv.2017.09.023
[29]

Zhang M, He LY, Liu YS, Zhao JL, Liu WR, et al. 2019. Fate of veterinary antibiotics during animal manure composting. Science of The Total Environment 650:1363−1370

doi: 10.1016/j.scitotenv.2018.09.147
[30]

Huang K, Xia H, Zhang Y, Li J, Cui G, et al. 2020. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. Bioresource Technology 297:122451

doi: 10.1016/j.biortech.2019.122451
[31]

Zhao C, Xin L, Xu X, Qin Y, Wu W. 2022. Dynamics of antibiotics and antibiotic resistance genes in four types of kitchen waste composting processes. Journal of Hazardous Materials 424:127526

doi: 10.1016/j.jhazmat.2021.127526
[32]

Zhao Y, Chen W, Zhang P, Cai J, Lou Y, et al. 2022. Microbial cooperation promotes humification to reduce antibiotic resistance genes abundance in food waste composting. Bioresource Technology 362:127824

doi: 10.1016/j.biortech.2022.127824
[33]

Tian X, Han B, Liang J, Yang F, Zhang K. 2021. Tracking antibiotic resistance genes (ARGs) during earthworm conversion of cow dung in northern China. Ecotoxicology and Environmental Safety 222:112538

doi: 10.1016/j.ecoenv.2021.112538
[34]

Cui G, Fu X, Bhat SA, Tian W, Lei X, et al. 2022. Temperature impacts fate of antibiotic resistance genes during vermicomposting of domestic excess activated sludge. Environmental Research 207:112654

doi: 10.1016/j.envres.2021.112654
[35]

Yu Z, Zhou M, Zhang H, Yuan L, Lv P, et al. 2024. Changes in Cd forms and Cd resistance genes in municipal sludge during coupled earthworm and biochar composting. Ecotoxicology and Environmental Safety 286:117179

doi: 10.1016/j.ecoenv.2024.117179
[36]

Kretzschmar A. 1978. Quantification, écologique des galeries de lombriciens Techniques et premières estimations. Pedobiologia 18:31−38

doi: 10.1016/S0031-4056(23)00556-5
[37]

Lavelle P. 1997. Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research 27:93−132

doi: 10.1016/S0065-2504(08)60007-0
[38]

Luo L, Zhang C, Zhang Z, Peng J, Han Y, et al. 2020. Differences in tetracycline antibiotic resistance genes and microbial community structure during aerobic composting and anaerobic digestion. Frontiers in Microbiology 11:583995

doi: 10.3389/fmicb.2020.583995
[39]

Si XG, Qiao ZQ, Peng XY, Ding L, Zhou CP. 2024. Research progress on antibiotic resistance genes in aerobic composting of livestock and poultry manure. Environmental Science & Technology 47:23−34 (in Chinese)

doi: 10.19672/j.cnki.1003-6504.0853.24.338
[40]

Zhong WZ, Chen SN, Li Y, Pan ZX, Hong C, et al. 2022. Research progress on the effect of aerobic composting on the growth and decline of antibiotic resistance genes. Applied Chemical Industry 51:2057−2063 (in Chinese)

doi: 10.16581/j.cnki.issn1671-3206.2022.07.003
[41]

Cui G, Bhat SA, Li W, Wei Y, Kui H, et al. 2019. Gut digestion of earthworms significantly attenuates cell-free and -associated antibiotic resistance genes in excess activated sludge by affecting bacterial profiles. Science of The Total Environment 691:644−653

doi: 10.1016/j.scitotenv.2019.07.177
[42]

Xie T, Lin D, Cai XD, Ma LJ, Wang L, et al. 2025. Nano-biochar regulates phage–host interactions, reducing antibiotic resistance genes in vermicomposting systems. Proceedings of the National Academy of Sciences of the United States of America 122:e2511986122

doi: 10.1073/pnas.2511986122
[43]

Engelmann P, Hayashi Y, Bodó K, Molnár L. 2016. New aspects of earthworm innate immunity: novel molecules and old proteins with unexpected functions. In Lessons in Immunity, eds Ballarin L, Cammarata M. US: Academic Press. pp. 53−66 doi: 10.1016/B978-0-12-803252-7.00004-7

[44]

Venkatachalam S, Christyraj JRSS, Bosco RBD, Yesudhason BV. 2025. Antimicrobial peptides from earthworms: emerging candidates for novel therapeutic applications. Toxicon 264:108458

doi: 10.1016/j.toxicon.2025.108458
[45]

Adomako MO, Wu J, Yu FH. 2025. Ecological and evolutionary responses of earthworm holobionts to environmental changes. The ISME Journal 19:wraf044

doi: 10.1093/ismejo/wraf044
[46]

Ni Z, Jia B, Li Y, Latif J, Yuan Y, et al. 2025. Reactive oxygen species generation in earthworm burrows and their impact in drilosphere organic carbon mineralization. Geoderma 457:117301

doi: 10.1016/j.geoderma.2025.117301
[47]

Li Z, Xing MY, Xiao F, Xing LB. 2022. Succession characteristics of earthworm intestinal microbial community and pathogens under stress of continuous-flow of excess sludge. Environmental Science & Technology 45:1−9 (in Chinese)

doi: 10.19672/j.cnki.1003-6504.0327.22.338
[48]

Uribe-Lorío L, Brenes-Guillén L, WingChing-Jones R, Uribe L, García F, et al. 2024. Valorization of cow manure: unraveling bacterial community changes driven by vermicomposting and their impact on vermicompost tea production. Waste and Biomass Valorization 15:2175−2190

doi: 10.1007/s12649-023-02276-4
[49]

Lv B, Xing M, Yang J, Zhang L. 2015. Pyrosequencing reveals bacterial community differences in composting and vermicomposting on the stabilization of mixed sewage sludge and cattle dung. Applied Microbiology and Biotechnology 99:10703−10712

doi: 10.1007/s00253-015-6884-7
[50]

Chen J, Xia H, Huang K, Li J, Xie J. 2023. Earthworms restructure the distribution of extracellular antibiotics resistance genes of sludge by modifying the structure of extracellular polymeric substances during vermicomposting. Journal of Hazardous Materials 452:131315

doi: 10.1016/j.jhazmat.2023.131315
[51]

Araujo Y, Luizão FJ, Barros E. 2004. Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms. Biology and Fertility of Soils 39:146−152

doi: 10.1007/s00374-003-0696-0
[52]

Kim YN, Robinson B, Lee KA, Boyer S, Dickinson N. 2017. Interactions between earthworm burrowing, growth of a leguminous shrub and nitrogen cycling in a former agricultural soil. Applied Soil Ecology 110:79−87

doi: 10.1016/j.apsoil.2016.10.011
[53]

Chen Y, Li M, Glibert PM, Heil C. 2023. MurKy waters: modeling the succession from r to K strategists (diatoms to dinoflagellates) following a nutrient release from a mining facility in Florida. Limnology and Oceanography 68:2288−2304

doi: 10.1002/lno.12420
[54]

Wüst PK, Horn MA, Drake HL. 2011. Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content. The ISME Journal 5:92−106

doi: 10.1038/ismej.2010.99
[55]

Lin Z, Zhen Z, Luo S, Ren L, Chen Y, et al. 2021. Effects of two ecological earthworm species on tetracycline degradation performance, pathway and bacterial community structure in laterite soil. Journal of Hazardous Materials 412:125212

doi: 10.1016/j.jhazmat.2021.125212
[56]

Qi W, Long J, Feng C, Feng Y, Cheng D, et al. 2019. Fe3+ enhanced degradation of oxytetracycline in water by pseudomonas. Water Research 160:361−370

doi: 10.1016/j.watres.2019.05.058
[57]

Cui G, Lü F, Zhang H, Shao L, He P. 2020. Critical insight into the fate of antibiotic resistance genes during biological treatment of typical biowastes. Bioresource Technology 317:123974

doi: 10.1016/j.biortech.2020.123974
[58]

Gaze WH, Zhang L, Abdouslam NA, Hawkey PM, Calvo-Bado L, et al. 2011. Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. The ISME Journal 5:1253−1261

doi: 10.1038/ismej.2011.15
[59]

Yang M, Peng L, Mu M, Yang F, Li Z, et al. 2025. Significant effects of earthworm species on antibiotic resistome in livestock manure as revealed by metagenomic analysis. Environmental Pollution 374:126277

doi: 10.1016/j.envpol.2025.126277
[60]

Huang K, Xia H, Wu Y, Chen J, Cui G, et al. 2018. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting. Bioresource Technology 259:32−39

doi: 10.1016/j.biortech.2018.03.021
[61]

Zhao M, Huang K, Wen F, Xia H, Song B. 2025. Biochar reduces plasmid-mediated antibiotic resistance gene transfer in earthworm ecological filters for rural sewage treatment. Journal of Hazardous Materials 487:137230

doi: 10.1016/j.jhazmat.2025.137230
[62]

Yang J, Schrader S, Tebbe CC. 2024. Legacy effects of earthworms on soil microbial abundance, diversity, and community dynamics. Soil Biology and Biochemistry 190:109294

doi: 10.1016/j.soilbio.2023.109294
[63]

Zhang Q. 2025. Antimicrobial peptides: from discovery to developmental applications. Applied and Environmental Microbiology 91:e02115-24

doi: 10.1128/aem.02115-24
[64]

Li H, Luo QP, Pu Q, Yang XR, An XL, et al. 2022. Earthworms reduce the dissemination potential of antibiotic resistance genes by changing bacterial co-occurrence patterns in soil. Journal of Hazardous Materials 426:128127

doi: 10.1016/j.jhazmat.2021.128127
[65]

McCann CM, Christgen B, Roberts JA, Su JQ, Arnold KE, et al. 2019. Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environment International 125:497−504

doi: 10.1016/j.envint.2019.01.034
[66]

Yan ZZ, Chen QL, Zhang YJ, He JZ, Hu HW. 2019. Antibiotic resistance in urban green spaces mirrors the pattern of industrial distribution. Environment International 132:105106

doi: 10.1016/j.envint.2019.105106
[67]

Zhu YG, Zhao Y, Li B, Huang CL, Zhang SY, et al. 2017. Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology 2:16270

doi: 10.1038/nmicrobiol.2016.270
[68]

Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, et al. 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America 110:3435−3440

doi: 10.1073/pnas.1222743110
[69]

Guhra T, Stolze K, Schweizer S, Totsche KU. 2020. Earthworm mucus contributes to the formation of organo-mineral associations in soil. Soil Biology and Biochemistry 145:107785

doi: 10.1016/j.soilbio.2020.107785
[70]

Bruno R, Maresca M, Canaan S, Cavalier JF, Mabrouk K, et al. 2019. Worms' antimicrobial peptides. Marine Drugs 17:512

doi: 10.3390/md17090512
[71]

Phillips HRP, Guerra CA, Bartz MLC, Briones MJI, Brown G, et al. 2019. Global distribution of earthworm diversity. Science 366:480−485

doi: 10.1126/science.aax4851
[72]

Suzuki G, Murakami A, Moriyasu Y, Fukuda M, Uji Y, et al. 2025. The gain-of-function mutation in the rice auxin-signaling repressor OsIAA13 induces resistance to rice bacterial blight by activating jasmonic acid-mediated defense system. Journal of General Plant Pathology 91:191−200

doi: 10.1007/s10327-025-01227-2
[73]

Zasloff M. 1992. Antibiotic peptides as mediators of innate immunity. Current Opinion in Immunology 4:3−7

doi: 10.1016/0952-7915(92)90115-U
[74]

Gong X, Shi W, Zhang Z, Luo M, Zhang B, et al. 2024. Exploring the effects of zeolite, biochar, and diatomite as additives for enhancing heavy metals passivation and eliminating antibiotic resistance genes in composts during vermicomposting of dewatered sludge and green waste. Journal of Environmental Chemical Engineering 12:112201

doi: 10.1016/j.jece.2024.112201
[75]

Hamidpour M, Akbari L, Shirani H. 2017. Effects of co-application of zeolites and vermicompost on speciation and phytoavailability of cadmium, lead, and zinc in a contaminated soil. Communications in Soil Science and Plant Analysis 48:262−273

doi: 10.1080/00103624.2016.1261885
[76]

Xiao Z, Han R, Su J, Zhu Z, Zhao Y, et al. 2023. Application of earthworm and silicon can alleviate antibiotic resistance in soil-Chinese cabbage system with ARGs contamination. Environmental Pollution 319:120900

doi: 10.1016/j.envpol.2022.120900
[77]

Zhang J, Chen M, Sui Q, Tong J, Jiang C, et al. 2016. Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting. Water Research 91:339−349

doi: 10.1016/j.watres.2016.01.010
[78]

Sanchez-Hernandez JC, Cares XA, Pérez MA, del Pino JN. 2019. Biochar increases pesticide-detoxifying carboxylesterases along earthworm burrows. Science of The Total Environment 667:761−768

doi: 10.1016/j.scitotenv.2019.02.402
[79]

Edwards CA, Arancon NQ. 2022. Interactions between earthworms, microorganisms, and other invertebrates. In Biology and Ecology of Earthworms. New York, NY: Springer. pp. 275–301 doi: 10.1007/978-0-387-74943-3_9

[80]

Huang K, Xia H. 2018. Role of earthworms' mucus in vermicomposting system: biodegradation tests based on humification and microbial activity. Science of The Total Environment 610−611:703−708

doi: 10.1016/j.scitotenv.2017.08.104
[81]

Lin L, Luo J, Li Z, Guo H, Liu T, et al. 2025. Mechanism of earthworm coelomic fluid inhibits multidrug-resistant bacteria and blocks resistance transmission. Environmental Pollution 383:126817

doi: 10.1016/j.envpol.2025.126817