[1]

Seymour JR, McLellan SL. 2025. Climate change will amplify the impacts of harmful microorganisms in aquatic ecosystems. Nature Microbiology 10:615−626

doi: 10.1038/s41564-025-01948-2
[2]

Titcomb G, Mantas JN, Hulke J, Rodriguez I, Branch D, et al. 2021. Water sources aggregate parasites with increasing effects in more arid conditions. Nature Communications 12:7066

doi: 10.1038/s41467-021-27352-y
[3]

Feng L, Wang Y, Hou X, Qin B, Kuster T, et al. 2024. Harmful algal blooms in inland waters. Nature Reviews Earth & Environment 5:631−644

doi: 10.1038/s43017-024-00578-2
[4]

Lund D, Parras-Moltó M, Inda-Díaz JS, Ebmeyer S, Larsson DGJ, et al. 2025. Genetic compatibility and ecological connectivity drive the dissemination of antibiotic resistance genes. Nature Communications 16:2595

doi: 10.1038/s41467-025-57825-3
[5]

Qiu S, Liu K, Yang C, Xiang Y, Min K, et al. 2022. A Shigella sonnei clone with extensive drug resistance associated with waterborne outbreaks in China. Nature Communications 13:7365

doi: 10.1038/s41467-022-35136-1
[6]

Borton MA, McGivern BB, Willi KR, Woodcroft BJ, Mosier AC, et al. 2025. A functional microbiome catalogue crowdsourced from North American rivers. Nature 637:103−112

doi: 10.1038/s41586-024-08240-z
[7]

Yu Z, Wang Y, Lu J, Bond PL, Guo J. 2021. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer. The ISME Journal 15:2117−2130

doi: 10.1038/s41396-021-00909-x
[8]

Li L, Li B, Yin X, Xia Y, Yang Y, et al. 2025. Assessing antimicrobial resistance connectivity across One Health sectors. Nature Water 3:1100−1113

doi: 10.1038/s44221-025-00514-8
[9]

Canciu A, Tertis M, Hosu O, Cernat A, Cristea C, et al. 2021. Modern analytical techniques for detection of bacteria in surface and wastewaters. Sustainability 13:7229

doi: 10.3390/su13137229
[10]

Zhu M, Wang J, Yang X, Zhang Y, Zhang L, et al. 2022. A review of the application of machine learning in water quality evaluation. Eco-Environment & Health 1:107−116

doi: 10.1016/j.eehl.2022.06.001
[11]

Tao Y, Karimian H, Shi J, Wang H, Yang X, et al. 2025. MobileYOLO-Cyano: an enhanced deep learning approach for precise classification of cyanobacterial genera in water quality monitoring. Water Research 285:124081

doi: 10.1016/j.watres.2025.124081
[12]

Cheng M, Sheshukov AY, Wang P, Tartakovsky DM. 2025. Data-aware forecast of harmful algal blooms with model error. Water Research 286:124201

doi: 10.1016/j.watres.2025.124201
[13]

Zhu T, Li S, Tao C, Chen W, Chen M, et al. 2025. Understanding the mechanism of microplastic-associated antibiotic resistance genes in aquatic ecosystems: insights from metagenomic analyses and machine learning. Water Research 268:122570

doi: 10.1016/j.watres.2024.122570
[14]

Li Y, Chen F, Liu Y, Khan MA, Zhao H, et al. 2025. Identification of multiple foodborne pathogens using single-atom nanozyme colorimetric sensor arrays and machine learning. Chemical Engineering Journal 511:162115

doi: 10.1016/j.cej.2025.162115
[15]

Zhu M, Fang Y, Jia M, Chen L, Zhang L, et al. 2025. Using machine learning models to predict the dose-effect curve of municipal wastewater for zebrafish embryo toxicity. Journal of Hazardous Materials 488:137278

doi: 10.1016/j.jhazmat.2025.137278
[16]

Bedell E, Harmon O, Fankhauser K, Shivers Z, Thomas E. 2022. A continuous, in-situ, near-time fluorescence sensor coupled with a machine learning model for detection of fecal contamination risk in drinking water: Design, characterization and field validation. Water Research 220:118644

doi: 10.1016/j.watres.2022.118644
[17]

Qiu J, Zhong Y, Shao Y, Zhang G, Yang J, et al. 2024. A dendrimer-based platform integrating surface-enhanced Raman scattering and class-incremental learning for rapidly detecting four pathogenic bacteria. Chemical Engineering Journal 499:155987

doi: 10.1016/j.cej.2024.155987
[18]

Bi L, Zhang H, Mu C, Sun K, Chen H, et al. 2025. Paper-based SERS chip with adaptive attention neural network for pathogen identification. Journal of Hazardous Materials 494:138694

doi: 10.1016/j.jhazmat.2025.138694
[19]

Pervaiz W, Afzal MH, Feng N, Peng X, Chen Y. 2025. Machine learning-enhanced electrochemical sensors for food safety: applications and perspectives. Trends in Food Science & Technology 156:104872

doi: 10.1016/j.jpgs.2025.104872
[20]

Zhao Y, Sun T, Zhang H, Li W, Lian C, et al. 2025. AI-enhanced electrochemical sensing systems: a paradigm shift for intelligent food safety monitoring. Biosensors 15:565

doi: 10.3390/bios15090565
[21]

Thaluka MR, Maheswari K, Nuthanakanti B, Srujan Raju K, Jonnadula N, et al. 2024. Biomimetic and biological sensing technologies for the assessment of water contaminants. 2024 1st International Conference on Advanced Computing and Emerging Technologies (ACET), Ghaziabad, India, 2024. US: IEEE. pp. 1−8 doi: 10.1109/ACET61898.2024.10730324

[22]

Teng Y, Cui J, Jiang W. 2021. Research on application of edge computing in real-time environmental monitoring system. Journal of Physics: Conference Series 2010:012157

doi: 10.1088/1742-6596/2010/1/012157
[23]

Gao J, Chen B, Tang SK. 2025. Water quality monitoring: a water quality dataset from an on-site study in Macao. Applied Sciences 15:4130

doi: 10.3390/app15084130
[24]

Roostaei J, Wager YZ, Shi W, Dittrich T, Miller C, et al. 2023. IoT-based edge computing (IoTEC) for improved environmental monitoring. Sustainable Computing 38:100870

doi: 10.1016/j.suscom.2023.100870
[25]

Akshya J, Sundarrajan M, Dhanaraj RK. 2025. Edge IoT-enabled cyber–physical systems with paper-based biosensors and temporal convolutional networks for real-time water contamination monitoring. Engineering Proceedings 106:3

doi: 10.3390/engproc2025106003
[26]

Yuan A, Wang B, Li J, Lee JHW. 2023. A low-cost edge AI-chip-based system for real-time algae species classification and HAB prediction. Water Research 233:119727

doi: 10.1016/j.watres.2023.119727
[27]

Mnif M, Sahnoun S, Djemaa M, Fakhfakh A, Kanoun O. 2024. Exploring Model Compression Techniques for Efficient 1D CNN-Based Hand Gesture Recognition on Resource-Constrained Edge Devices. 2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP), Sousse, Tunisia, 2024. US: IEEE. pp. 659–664 doi: 10.1109/ATSIP62566.2024.10638925

[28]

Yi J, Wisuthiphaet N, Raja P, Nitin N, Earles JM. 2023. AI-enabled biosensing for rapid pathogen detection: from liquid food to agricultural water. Water Research 242:120258

doi: 10.1016/j.watres.2023.120258
[29]

Kiyok OV, Redko AN, Enina EY, Krupoder AS, Bogdan AP. 2025. Modern scientific and methodological approaches to monitoring water bodies and wastewater: a review. Ekologiya Cheloveka (Human Ecology) 32:616−627

doi: 10.17816/humeco690078
[30]

Coltelli P, Barsanti L, Evangelista V, Frassanito AM, Gualtieri P. 2014. Water monitoring: automated and real time identification and classification of algae using digital microscopy. Environmental Science: Processes & Impacts 16:2656−2665

doi: 10.1039/C4EM00451E
[31]

Lian Y, Fan Z, Xing Q, Wang W. 2024. Underwater biological target detection in East Juyan Lake based on improved YOLOv8. 2024 6th International Conference on Internet of Things, Automation and Artificial Intelligence (IoTAAI), Guangzhou, China, 2024. US: IEEE. pp. 84–87 doi: 10.1109/IoTAAI62601.2024.10692756

[32]

Jiang H, Zhao J, Ma F, Yang Y, Yi R. 2025. Mobile-YOLO: a lightweight object detection algorithm for four categories of aquatic organisms. Fishes 10:348

doi: 10.3390/fishes10070348
[33]

Lee H, Kwon H, Kim W. 2021. Generating hard examples for pixel-wise classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14:9504−9517

doi: 10.1109/JSTARS.2021.3112924
[34]

Puškarić S, Sokač M, Ninčević Ž, Šantić D, Skejić S, et al. 2024. Extracted spectral signatures from the water column as a tool for the prediction of the structure of a marine microbial community. Journal of Marine Science and Engineering 12:286

doi: 10.3390/jmse12020286
[35]

Shen F, Li Y, Deng H, Wang T, Cai F, et al. 2025. Underwater light sheet hyperspectral microscopy and its applications in unicellular microalgae in-situ identification and counting. Optics & Laser Technology 192:113967

doi: 10.1016/j.optlastec.2025.113967
[36]

Wang Z, Liang P, Zhai J, Wu B, Chen X, et al. 2025. Efficient detection of foodborne pathogens via SERS and deep learning: an ADMIN-optimized NAS-Unet approach. Journal of Hazardous Materials 489:137581

doi: 10.1016/j.jhazmat.2025.137581
[37]

Kwon DH, Lee MJ, Jeong H, Park S, Cho KH. 2025. Multi-modal learning-based algae phyla identification using image and particle modalities. Water Research 275:123172

doi: 10.1016/j.watres.2025.123172
[38]

Englehardt JD, Li R. 2011. The discrete Weibull distribution: an alternative for correlated counts with confirmation for microbial counts in water. Risk Analysis 31:370−381

doi: 10.1111/j.1539-6924.2010.01520.x
[39]

Kim J, Seo D. 2024. Three-dimensional augmentation for hyperspectral image data of water quality: an integrated approach using machine learning and numerical models. Water Research 251:121125

doi: 10.1016/j.watres.2024.121125
[40]

Chan WH, Fung BSB, Tsang DHK, Lo IMC. 2023. A freshwater algae classification system based on machine learning with StyleGAN2-ADA augmentation for limited and imbalanced datasets. Water Research 243:120409

doi: 10.1016/j.watres.2023.120409
[41]

Zou Y, Li Y, Zhang F, Ge Y, Wang W, et al. 2025. Rapid identification of Litopenaeus vannamei pathogenic bacteria: a combined approach using surface-enhanced Raman spectroscopy (SERS) and deep learning. Analytical and Bioanalytical Chemistry 417:4587−4603

doi: 10.1007/s00216-025-05974-1
[42]

Ricker R, Perea N, Ghedin E, Loew M. 2024. Evaluation of synthetic Raman spectra for use in virus detection. Proc. Proceedings of SPIE - The International Society for Optical Engineering, National Harbor, Maryland, United States, 2024. Volume 13035. Maryland: SPIE Presss. doi: 10.1117/12.3016167

[43]

Meng XZ, Liu YQ, Liu LN. 2024. Raman spectroscopy combined with the WGANGP-ResNet algorithm to identify pathogenic species. Spectroscopy and Spectral Analysis 44:542−547 (in Chinese)

doi: 10.3964/j.issn.1000-0593(2024)02-0542-06
[44]

Sonmez ME, Eczacıoglu N, Gumuş NE, Aslan MF, Sabanci K, et al. 2022. Convolutional neural network - support vector machine based approach for classification of cyanobacteria and chlorophyta microalgae groups. Algal Research 61:102568

doi: 10.1016/j.algal.2021.102568
[45]

Peng L, Wu H, Gao M, Yi H, Xiong Q, et al. 2022. TLT: recurrent fine-tuning transfer learning for water quality long-term prediction. Water Research 225:119171

doi: 10.1016/j.watres.2022.119171
[46]

Yu Y, Zhao S, Han L, Peng L, Xu Y, et al. 2025. Cycleift: a deep transfer learning model based on informer with cycle fine-tuning for water quality prediction. Stochastic Environmental Research and Risk Assessment 39:2873−2885

doi: 10.1007/s00477-025-02997-z
[47]

Eapen NG, George J. 2024. Exploring self-supervised learning architectures for image processing: milestones and challenges. 2024 IEEE 4th International Conference on ICT in Business Industry & Government (ICTBIG), Indore, India, 2024. Indore: IEEE. pp. 1–5 doi: 10.1109/ICTBIG64922.2024.10911752

[48]

Ohri K, Kumar M. 2021. Review on self-supervised image recognition using deep neural networks. Knowledge-Based Systems 224:107090

doi: 10.1016/j.knosys.2021.107090
[49]

Xie Y, Xu Z, Zhang J, Wang Z, Ji S. 2023. Self-Supervised Learning of Graph Neural Networks: A Unified Review. IEEE Transactions on Pattern Analysis and Machine Intelligence 45:2412−2429

doi: 10.1109/TPAMI.2022.3170559
[50]

Premakumara N, Jalaian B, Suri N, Samani H. 2023. Improving object detection robustness against natural perturbations through synthetic data augmentation. Proceedings of the 2023 Asia Conference on Computer Vision, Image Processing and Pattern Recognition, Phuket Thailand, 2023. pp. 1−6 doi: 10.1145/3596286.3596293

[51]

Lemes EM. 2025. Raman spectroscopy–a visit to the literature on plant, food, and agricultural studies. Journal of the Science of Food and Agriculture 105:2128−2133

doi: 10.1002/jsfa.13803
[52]

Kuppusamy S, Meivelu M, Praburaman L, Mujahid Alam M, Al-Sehemi AG, et al. 2024. Integrating AI in food contaminant analysis: enhancing quality and environmental protection. Journal of Hazardous Materials Advances 16:100509

doi: 10.1016/j.hazadv.2024.100509
[53]

Liu X, Deng Y, Chen S, Wang J, Zhang Y, et al. 2025. Identifying key taxa for algal blooms in a large aquatic ecosystem through machine learning. Environmental Science & Technology 59:20499−20511

doi: 10.1021/acs.est.5c08910
[54]

Clements E, Thompson KA, Hannoun D, Dickenson ERV. 2024. Classification machine learning to detect de facto reuse and cyanobacteria at a drinking water intake. Science of The Total Environment 948:174690

doi: 10.1016/j.scitotenv.2024.174690
[55]

Nehal SA, Roy D, Devi M, Srinivas T. 2020. Highly sensitive lab-on-chip with deep learning AI for detection of bacteria in water. International Journal of Information Technology 12:495−501

doi: 10.1007/s41870-019-00363-1
[56]

Chirchi V, Chirchi E, Khushi EC, Bairavi SM, Indu KS. 2024. Optical sensor for water bacteria detection using machine learning. 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 2024. New Delhi: IEEE. pp. 603–608 doi: 10.23919/INDIACom61295.2024.10498622

[57]

Mousavizadegan M, Hosseini M, Mohammadimasoudi M, Guan Y, Xu G. 2024. Machine learning-assisted liquid crystal optical sensor array using cysteine-functionalized silver nanotriangles for pathogen detection in food and water. ACS Applied Materials & Interfaces 16:70419−70428

doi: 10.1021/acsami.4c19722
[58]

Zhang S, Zhu W, Zhang J, Zhang X, Wang F. 2025. Perovskite quantum dot-based fluorescent sensor array coupled with machine learning for rapid pathogenic bacteria detection and identification. Chemical Engineering Journal 522:167280

doi: 10.1016/j.cej.2025.167280
[59]

Rho E, Kim M, Cho SH, Choi B, Park H, et al. 2022. Separation-free bacterial identification in arbitrary media via deep neural network-based SERS analysis. Biosensors and Bioelectronics 202:113991

doi: 10.1016/j.bios.2022.113991
[60]

Qian H, McLamore E, Bliznyuk N. 2023. Machine learning for improved detection of pathogenic E. coli in hydroponic irrigation water using impedimetric aptasensors: a comparative study. ACS Omega 8:34171−34179

doi: 10.1021/acsomega.3c05797
[61]

Aliev TA, Lavrentev FV, Dyakonov AV, Diveev DA, Shilovskikh VV, et al. 2024. Electrochemical platform for detecting Escherichia coli bacteria using machine learning methods. Biosensors and Bioelectronics 259:116377

doi: 10.1016/j.bios.2024.116377
[62]

Ligda P, Mittas N, Kyzas GZ, Claerebout E, Sotiraki S. 2024. Machine learning and explainable artificial intelligence for the prevention of waterborne cryptosporidiosis and giardiosis. Water Research 262:122110

doi: 10.1016/j.watres.2024.122110
[63]

He W, Zhu H, Geng J, Hu X, Li Y, et al. 2024. Recognition of parasitic helminth eggs via a deep learning-based platform. Frontiers in Microbiology 15:1485001

doi: 10.3389/fmicb.2024.1485001
[64]

Kakkar B, goyal M, Johri P, Kumar Y. 2023. Artificial intelligence-based approaches for detection and classification of different classes of malaria parasites using microscopic images: a systematic review. Archives of Computational Methods in Engineering 30:4781−4800

doi: 10.1007/s11831-023-09959-0
[65]

Rannon E, Shaashua S, Burstein D. 2025. DRAMMA: a multifaceted machine learning approach for novel antimicrobial resistance gene detection in metagenomic data. Microbiome 13:67

doi: 10.1186/s40168-025-02055-4
[66]

Su H, Zhu T, Lv J, Wang H, Zhao J, et al. 2024. Leveraging machine learning for prediction of antibiotic resistance genes post thermal hydrolysis-anaerobic digestion in dairy waste. Bioresource Technology 399:130536

doi: 10.1016/j.biortech.2024.130536
[67]

Li Y, Shi K, Zhu M, Li H, Guo Y, et al. 2025. Data-driven models for forecasting algal biomass in a large and deep reservoir. Water Research 270:122832

doi: 10.1016/j.watres.2024.122832
[68]

Cruz RC, Costa PR, Krippahl L, Lopes MB. 2022. Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural Networks. Knowledge-Based Systems 257:109895

doi: 10.1016/j.knosys.2022.109895
[69]

Qian J, Pu N, Qian L, Xue X, Bi Y, et al. 2023. Identification of driving factors of algal growth in the South-to-North Water Diversion Project by Transformer-based deep learning. Water Biology and Security 2:100184

doi: 10.1016/j.watbs.2023.100184
[70]

Deng R, Zhu T, Zhou W, Liu F, Lin X. 2025. Machine learning based water quality evolution and pollution identification in reservoir type rivers. Environmental Pollution 382:126668

doi: 10.1016/j.envpol.2025.126668
[71]

Shah FU, Khan AU, Khan AW, Ullah B, Khan MR, et al. 2024. Comparative analysis of ensemble learning algorithms in water quality prediction. Journal of Hydroinformatics 26:3041−3059

doi: 10.2166/hydro.2024.071
[72]

White K, Dickson-Anderson S, Majury A, McDermott K, Hynds P, et al. 2021. Exploration of E. coli contamination drivers in private drinking water wells: an application of machine learning to a large, multivariable, geo-spatio-temporal dataset. Water Research 197:117089

doi: 10.1016/j.watres.2021.117089
[73]

Chen J, N'Doye I, Myshkevych Y, Aljehani F, Monjed MK, et al. 2025. Viral particle prediction in wastewater treatment plants using nonlinear lifelong learning models. npj Clean Water 8:28

doi: 10.1038/s41545-025-00461-7
[74]

Xie Y, Chen S, Zhou F, Wang J, Liu Y, et al. 2025. Development of a hybrid algal population prediction (HAPP) model by algae growth potential estimation and time series regression and its application in one reservoir in China. Water Research 287:124419

doi: 10.1016/j.watres.2025.124419
[75]

Tewari M, Kishtawal CM, Moriarty VW, Ray P, Singh T, et al. 2022. Improved seasonal prediction of harmful algal blooms in Lake Erie using large-scale climate indices. Communications Earth & Environment 3:195

doi: 10.1038/s43247-022-00510-w
[76]

Tong X, Goh SG, Mohapatra S, Tran NH, You L, et al. 2024. Predicting antibiotic resistance and assessing the risk burden from antibiotics: a holistic modeling framework in a tropical reservoir. Environmental Science and Technology 58:6781−6792

doi: 10.1021/acs.est.3c10467
[77]

Pyo J, Park LJ, Pachepsky Y, Baek SS, Kim K, et al. 2020. Using convolutional neural network for predicting cyanobacteria concentrations in river water. Water Research 186:116349

doi: 10.1016/j.watres.2020.116349
[78]

Li X, Yu J, Jia Z, Song J. 2014. Harmful algal blooms prediction with machine learning models in Tolo Harbour. 2014 International Conference on Smart Computing, Hong Kong, China, 2014. pp. 245−250 doi: 10.1109/SMARTCOMP.2014.7043865

[79]

Deng T, Chau KW, Duan HF. 2021. Machine learning based marine water quality prediction for coastal hydro-environment management. Journal of Environmental Management 284:112051

doi: 10.1016/j.jenvman.2021.112051
[80]

Lee D, Kim M, Lee B, Chae S, Kwon S, et al. 2022. Integrated explainable deep learning prediction of harmful algal blooms. Technological Forecasting and Social Change 185:122046

doi: 10.1016/j.techfore.2022.122046
[81]

Shahmiri A, Seyed-Djawadi MH, Siadatmousavi SM. 2025. AI-driven forecasting of harmful algal blooms in Persian Gulf and Gulf of Oman using remote sensing. Environmental Modelling & Software 185:106311

doi: 10.1016/j.envsoft.2024.106311
[82]

Wen J, Yang J, Li Y, Gao L. 2022. Harmful algal bloom warning based on machine learning in maritime site monitoring. Knowledge-Based Systems 245:108569

doi: 10.1016/j.knosys.2022.108569
[83]

Kang M, Kim DK, Le VV, Ko SR, Lee JJ, et al. 2024. Microcystis abundance is predictable through ambient bacterial communities: a data-oriented approach. Journal of Environmental Management 368:122128

doi: 10.1016/j.jenvman.2024.122128
[84]

de Luca Lopes de Amorim F, Rick J, Lohmann G, Wiltshire KH. 2021. Evaluation of machine learning predictions of a highly resolved time series of chlorophyll-a concentration. Applied Sciences 11:7208

doi: 10.3390/app11167208
[85]

Xia R, Wang G, Zhang Y, Yang P, Yang Z, et al. 2020. River algal blooms are well predicted by antecedent environmental conditions. Water Research 185:116221

doi: 10.1016/j.watres.2020.116221
[86]

Yu P, Gao R, Zhang D, Liu ZP. 2021. Predicting coastal algal blooms with environmental factors by machine learning methods. Ecological Indicators 123:107334

doi: 10.1016/j.ecolind.2020.107334
[87]

Park Y, Lee HK, Shin JK, Chon K, Kim S, et al. 2021. A machine learning approach for early warning of cyanobacterial bloom outbreaks in a freshwater reservoir. Journal of Environmental Management 288:112415

doi: 10.1016/j.jenvman.2021.112415
[88]

Kim JH, Shin JK, Lee H, Lee DH, Kang JH, et al. 2021. Improving the performance of machine learning models for early warning of harmful algal blooms using an adaptive synthetic sampling method. Water Research 207:117821

doi: 10.1016/j.watres.2021.117821
[89]

Veras CE, Tobiason J, Marques AC, Lee Y, Kumpel E. 2025. Seasonal total coliform dynamics in a drinking water reservoir. Water Research 284:123850

doi: 10.1016/j.watres.2025.123850
[90]

de Lacerda MC, Batista GS, de Souza AFN, Aragão DP, de Araújo MMC, et al. 2025. Predicting the presence of total coliforms and Escherichia coli in water supply reservoirs using machine learning models. Journal of Water Process Engineering 76:108146

doi: 10.1016/j.jwpe.2025.108146
[91]

Sokolova E, Ivarsson O, Lillieström A, Speicher NK, Rydberg H, et al. 2022. Data-driven models for predicting microbial water quality in the drinking water source using E. coli monitoring and hydrometeorological data. Science of The Total Environment 802:149798

doi: 10.1016/j.scitotenv.2021.149798
[92]

Froeschke BF, Roux-Osovitz M, Baker ML, Hampson EG, Nau SL, et al. 2024. The use of boosted regression trees to predict the occurrence and quantity of Staphylococcus aureus in recreational marine waterways. Water 16:1283

doi: 10.3390/w16091283
[93]

Miao J, Wei Z, Zhou S, Li J, Shi D, et al. 2022. Predicting the concentrations of enteric viruses in urban rivers running through the city center via an artificial neural network. Journal of Hazardous Materials 438:129506

doi: 10.1016/j.jhazmat.2022.129506
[94]

Chen S, Huang J, Huang J, Wang P, Sun C, et al. 2025. Explainable deep learning identifies patterns and drivers of freshwater harmful algal blooms. Environmental Science and Ecotechnology 23:100522

doi: 10.1016/j.ese.2024.100522
[95]

Abert-Fernández D, Aguilera E, Emiliano P, Valero F, Monclús H. 2025. Beyond point predictions: quantifying uncertainty in E. coli ML-based monitoring. Journal of Water Process Engineering 78:108734

doi: 10.1016/j.jwpe.2025.108734
[96]

Guo J, Yu C, Qi W, Qu J, Duan Y, et al. 2025. Machine-learning-based prediction of algal density using algal volatile organic compounds for bloom early warning. Environmental Science & Technology 59:20168−20178

doi: 10.1021/acs.est.5c04879
[97]

Li L, Qiao J, Yu G, Wang L, Li HY, et al. 2022. Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211:118078

doi: 10.1016/j.watres.2022.118078
[98]

Smalley AL, Douterelo I, Chipps M, Shucksmith JD. 2025. Data-driven prediction of daily Cryptosporidium river concentrations for water resource management: use of catchment-averaged vs spatially distributed features in a Bagging-XGBoost model. Science of The Total Environment 991:179794

doi: 10.1016/j.scitotenv.2025.179794
[99]

Jiang Y, Song Y, Liu J, Liu H, Zang X, et al. 2025. Machine learning assisted precise prediction of algae bloom in large-scale water diversion engineering. Desalination 610:118880

doi: 10.1016/j.desal.2025.118880
[100]

Reynaert E, Steiner P, Yu Q, D'Olif L, Joller N, et al. 2023. Predicting microbial water quality in on-site water reuse systems with online sensors. Water Research 240:120075

doi: 10.1016/j.watres.2023.120075
[101]

Turner AD, Lewis AM, Bradley K, Maskrey BH. 2021. Marine invertebrate interactions with Harmful Algal Blooms - Implications for One Health. Journal of Invertebrate Pathology 186:107555

doi: 10.1016/j.jip.2021.107555
[102]

Pepi A, Pan V, Grof-Tisza P, Holyoak M, Ballman A, et al. 2023. Spatial habitat heterogeneity influences host-pathogen dynamics in a patchy population of Ranchman's tiger moth. Ecology 104:e4144

doi: 10.1002/ecy.4144
[103]

Chen S, Janies D, Paul R, Thill JC. 2024. Leveraging advances in data-driven deep learning methods for hybrid epidemic modeling. Epidemics 48:100782

doi: 10.1016/j.epidem.2024.100782
[104]

Sheik AG, Kumar A, Patnaik R, Kumari S, Bux F. 2024. Machine learning-based design and monitoring of algae blooms: recent trends and future perspectives – a short review. Critical Reviews in Environmental Science and Technology 54:509−532

doi: 10.1080/10643389.2023.2252313
[105]

Shang J, Li Y, Zhang W, Ma X, Yin H, et al. 2024. Supervised machine learning for understanding and predicting the status of bistable eukaryotic plankton community in urbanized rivers. Water Research 266:122419

doi: 10.1016/j.watres.2024.122419
[106]

Groffman PM, Baron JS, Blett T, Gold AJ, Goodman I, et al. 2006. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9:1−13

doi: 10.1007/s10021-003-0142-z
[107]

Kalenitchenko D, Peru E, Galand PE. 2021. Historical contingency impacts on community assembly and ecosystem function in chemosynthetic marine ecosystems. Scientific Reports 11:13994

doi: 10.1038/s41598-021-92613-1
[108]

Kim HG, Hong S, Kim DK, Joo GJ. 2020. Drivers shaping episodic and gradual changes in phytoplankton community succession: Taxonomic versus functional groups. Science of The Total Environment 734:138940

doi: 10.1016/j.scitotenv.2020.138940
[109]

Shi K, Zhang J, Wu C, Zhao Y, Li W, et al. 2025. Vertical dynamics of DOM-specialized bacteria and fungi drive stability in stratified reservoirs: mechanisms revealed by machine learning. Water Research 287:124334

doi: 10.1016/j.watres.2025.124334
[110]

Tam JC, Fay G, Link JS. 2019. Better together: the uses of ecological and socio-economic indicators with end-to-end models in marine ecosystem based management. Frontiers in Marine Science 6:560

doi: 10.3389/fmars.2019.00560
[111]

McCarthy DT, Jovanovic D, Lintern A, Teakle I, Barnes M, et al. 2017. Source tracking using microbial community fingerprints: method comparison with hydrodynamic modelling. Water Research 109:253−265

doi: 10.1016/j.watres.2016.11.043
[112]

Li P, Dong L, Li L, Xue M, Xia G, et al. 2026. Credibility-driven identification of cropland runoff source in surface waters using ANN-XGBoost model ensemble powered by microbial fingerprints. Water Research 288:124692

doi: 10.1016/j.watres.2025.124692
[113]

O'Dea C, Zhang Q, Staley C, Masters N, Kuballa A, et al. 2019. Compositional and temporal stability of fecal taxon libraries for use with SourceTracker in sub-tropical catchments. Water Research 165:114967

doi: 10.1016/j.watres.2019.114967
[114]

Wang C, Yang H, Liu H, Zhang XX, Ma L. 2023. Anthropogenic contributions to antibiotic resistance gene pollution in household drinking water revealed by machine-learning-based source-tracking. Water Research 246:120682

doi: 10.1016/j.watres.2023.120682
[115]

Xu Y, Han G, Zhang H, Yu Z, Liu R. 2022. Application of fast expectation-maximization microbial source tracking to discern fecal contamination in rivers exposed to low fecal inputs. Journal of Microbiology 60:594−601

doi: 10.1007/s12275-022-1651-9
[116]

Huang Z, Cai D, Sun Y. 2024. Towards more accurate microbial source tracking via non-negative matrix factorization (NMF). Bioinformatics 40:i68−i78

doi: 10.1093/bioinformatics/btae227
[117]

Pei Y, Shum MH, Liao Y, Leung VW, Gong YN, et al. 2024. ARGNet: using deep neural networks for robust identification and classification of antibiotic resistance genes from sequences. Microbiome 12:84

doi: 10.1186/s40168-024-01805-0
[118]

Sun Y, Clarke B, Clarke J, Li X. 2021. Predicting antibiotic resistance gene abundance in activated sludge using shotgun metagenomics and machine learning. Water Research 202:117384

doi: 10.1016/j.watres.2021.117384
[119]

Xiao B, Pu Q, Ding G, Wang Z, Li Y, et al. 2025. Synergistic effect of horizontal transfer of antibiotic resistance genes between bacteria exposed to microplastics and per/polyfluoroalkyl substances: an explanation from theoretical methods. Journal of Hazardous Materials 492:138208

doi: 10.1016/j.jhazmat.2025.138208
[120]

Fianchini M, Solidoro C, Melaku Canu D. 2025. Improving MaxEnt reliability with multi-criteria analysis and site weighting: a case study on Caulerpa cylindracea. Ecological Solutions and Evidence 6:e70074

doi: 10.1002/2688-8319.70074
[121]

Karatas M, Bloemen M, Swinnen J, Roukaerts I, Gucht SV, et al. 2025. Untapped potential of wastewater for animal and potentially zoonotic virus surveillance: pilot study to detect non-human animal viruses in urban settings. Environment International 199:109500

doi: 10.1016/j.envint.2025.109500
[122]

Stedtfeld RD, Williams MR, Fakher U, Johnson TA, Stedtfeld TM, et al. 2016. Antimicrobial resistance dashboard application for mapping environmental occurrence and resistant pathogens. FEMS Microbiology Ecology 92:fiw020

doi: 10.1093/femsec/fiw020
[123]

Sheng Y, Gao W, Cao M, Cheng H, Cai Y. 2025. Effect of sampling frequency and streamflow on nutrient source apportionment in subtropical rivers. Water Science and Technology 92:1131−1144

doi: 10.2166/wst.2025.152
[124]

Xu DH, Li T, Lin YZ, Chen TF. 2025. Source apportionment of nitrate in groundwater based on correlation monitoring indicators in Liaodong Bay. Earth Science Frontiers 32:376−387

doi: 10.13745/j.esf.sf.2025.4.13
[125]

Hou X, Gao W, Zhang M, Xia R, Zhang Y, et al. 2022. Source apportionment of water pollutants in Poyang Lake Basin in China using absolute principal component score–multiple linear regression model combined with land-use parameters. Frontiers in Environmental Science 10:924350

doi: 10.3389/fenvs.2022.924350
[126]

Li Q, Zhang H, Guo S, Fu K, Liao L, et al. 2020. Groundwater pollution source apportionment using principal component analysis in a multiple land-use area in southwestern China. Environmental Science and Pollution Research International 27:9000−9011

doi: 10.1007/s11356-019-06126-6
[127]

Yu D, Andersson-Li M, Maes S, Andersson-Li L, Neumann NF, et al. 2024. Development of a logic regression-based approach for the discovery of host- and niche-informative biomarkers in Escherichia coli and their application for microbial source tracking. Applied and Environmental Microbiology 90:e0022724

doi: 10.1128/aem.00227-24
[128]

Song H, Unno T. 2024. A comprehensive database of human and livestock fecal microbiome for community-wide microbial source tracking: a case study in South Korea. Applied Biological Chemistry 67:58

doi: 10.1186/s13765-024-00915-5
[129]

Emon MI, Cheung YF, Stoll J, Rumi MA, Brown C, et al. 2025. CIWARS: a web server for antibiotic resistance surveillance using longitudinal metagenomic data. Journal of Molecular Biology 437:169159

doi: 10.1016/j.jmb.2025.169159
[130]

Wu J, Song C, Dubinsky EA, Stewart JR. 2020. Tracking major sources of water contamination using machine learning. Frontiers in Microbiology 11:616692

doi: 10.3389/fmicb.2020.616692
[131]

Haak L, Delic B, Li L, Guarin T, Mazurowski L, et al. 2022. Spatial and temporal variability and data bias in wastewater surveillance of SARS-CoV-2 in a sewer system. Science of The Total Environment 805:150390

doi: 10.1016/j.scitotenv.2021.150390
[132]

Wardi M, Belmouden A, Aghrouch M, Lotfy A, Idaghdour Y, et al. 2024. Wastewater genomic surveillance to track infectious disease-causing pathogens in low-income countries: advantages, limitations, and perspectives. Environment International 192:109029

doi: 10.1016/j.envint.2024.109029
[133]

Starikova EG, Tolmachev IV, Voronkova OV, Kaverina IS, Stasevskij VI, et al. 2024. Analysis of the trends in application of artificial intelligence in medical parasitology. Siberian Medical Review 2024:17−25

doi: 10.20333/25000136-2024-5-17-25
[134]

Yang L, Zhang Z, Lin X, Hei J, Wang Y, et al. 2025. AI-powered approaches for enhancing remote sensing-based water contamination detection in ecological systems. Frontiers in Environmental Science 13:1612658

doi: 10.3389/fenvs.2025.1612658
[135]

Li Y, Chen B, Yang S, Jiao Z, Zhang M, et al. 2025. Advances in environmental pollutant detection techniques: enhancing public health monitoring and risk assessment. Environment International 197:109365

doi: 10.1016/j.envint.2025.109365
[136]

Hagström Å, Haecky P, Zweifel UL, Blackburn N. 2024. Simulated bacterial species succession. Ecological Modelling 498:110905

doi: 10.1016/j.ecolmodel.2024.110905
[137]

Yu S, Li H, Li X, Fu YV, Liu F. 2020. Classification of pathogens by Raman spectroscopy combined with generative adversarial networks. Science of The Total Environment 726:138477

doi: 10.1016/j.scitotenv.2020.138477
[138]

Ramakodi MP. 2021. Effect of amplicon sequencing depth in environmental microbiome research. Current Microbiology 78:1026−1033

doi: 10.1007/s00284-021-02345-8
[139]

Mathew DE, Ebem DU, Ikegwu AC, Ukeoma PE, Dibiaezue NF. 2025. Recent emerging techniques in explainable artificial intelligence to enhance the interpretable and understanding of AI models for human. Neural Processing Letters 57:16

doi: 10.1007/s11063-025-11732-2
[140]

Sepioło D, Ligęza A. 2024. Towards model-driven explainable artificial intelligence: function identification with grammatical evolution. Applied Sciences 14:5950

doi: 10.3390/app14135950
[141]

Vorabbi L, Maltoni D, Borghi G, Santi S. 2024. Enabling on-device continual learning with binary neural networks and latent replay. Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications 2:25−36

doi: 10.5220/0012269000003660
[142]

Han BA, Varshney KR, LaDeau S, Subramaniam A, Weathers KC, et al. 2023. A synergistic future for AI and ecology. Proceedings of the National Academy of Sciences of the United States of America 120:e2220283120

doi: 10.1073/pnas.2220283120
[143]

Zhu S, Hong J, Wang T. 2024. Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species. Nature Communications 15:800

doi: 10.1038/s41467-024-45154-w