[1]

Wang L, Madawala UK, Wong MC. 2021. A wireless vehicle-to-grid-to-home power interface with an adaptive DC link. IEEE Journal of Emerging and Selected Topics in Power Electronics 9:2373−83

doi: 10.1109/JESTPE.2020.2992776
[2]

Liu Y, Jin D, Jiang S, Liang W, Peng J, et al. 2019. An active damping control method for the LLCL filter-based SiC MOSFET grid-connected inverter in vehicle-to-grid application. IEEE Transactions on Vehicular Technology 68:3411−23

doi: 10.1109/TVT.2019.2899166
[3]

Verma A, Singh B. 2021. AFF-SOGI-DRC control of renewable energy based grid interactive charging station for EV with power quality improvement. IEEE Transactions on Industry Applications 57:588−97

doi: 10.1109/TIA.2020.3029547
[4]

Liu H, Hu Z, Song Y, Lin J. 2013. Decentralized vehicle-to-grid control for primary frequency regulation considering charging demands. IEEE Transactions on Power Systems 28:3480−89

doi: 10.1109/TPWRS.2013.2252029
[5]

Zhang Y, Guan S, Zhang Y. 2019. Single-stage AC-AC converter with controllable phase and amplitude. IEEE Transactions on Power Electronics 34:6991−7000

doi: 10.1109/TPEL.2018.2875093
[6]

Weerasinghe S, Madawala UK, Thrimawithana DJ. 2017. A matrix converter-based bidirectional contactless grid interface. IEEE Transactions on Power Electronics 32:1755−66

doi: 10.1109/TPEL.2016.2557963
[7]

Samanta S, Rathore AK. 2018. A new inductive power transfer topology using direct AC-AC converter with active source current waveshaping. IEEE Transactions on Power Electronics 33:5565−77

doi: 10.1109/TPEL.2017.2750081
[8]

Kumar J, Samanta S. 2024. A single-stage universal input wireless inductive power transfer system with V2G capability. IEEE Journal of Emerging and Selected Topics in Industrial Electronics 5:1017−29

doi: 10.1109/JESTIE.2024.3392269
[9]

Khan AA, Cha H, Ahmed HF. 2016. High-efficiency single-phase AC-AC converters without commutation problem. IEEE Transactions on Power Electronics 31:5655−65

doi: 10.1109/TPEL.2015.2494605
[10]

Tan PA, Lei W, Wang B, Xu X. 2024. A dual-output AC-AC converter for double transmitter wireless power transfer systems. IEEE Transactions on Industrial Electronics 71:12131−40

doi: 10.1109/TIE.2023.3347854
[11]

Khan AA, Cha H, Kim HG. 2016. Magnetic integration of discrete-coupled inductors in single-phase direct PWM AC-AC converters. IEEE Transactions on Power Electronics 31:2129−38

doi: 10.1109/TPEL.2015.2427455
[12]

Shin HH, Cha H, Kim HG, Yoo DW. 2015. Novel single-phase PWM AC-AC converters solving commutation problem using switching cell structure and coupled inductor. IEEE Transactions on Power Electronics 30:2137−47

doi: 10.1109/TPEL.2014.2330351
[13]

Mishima T, Sakamoto S, Ide C. 2017. ZVS phase-shift PWM-controlled single-stage boost full-bridge AC-AC converter for high-frequency induction heating applications. IEEE Transactions on Industrial Electronics 64:2054−61

doi: 10.1109/TIE.2016.2620098
[14]

Belkamel H, Kim H, Choi S. 2021. Interleaved totem-pole ZVS converter operating in CCM for single-stage bidirectional AC-DC conversion with high-frequency isolation. IEEE Transactions on Power Electronics 36:3486−95

doi: 10.1109/TPEL.2020.3016684
[15]

Zhang X, Zhang Q, Zhang F. 2025. Triple phase ratio shift control for bidirectional wireless power transfer application based on totem-pole single-stage AC-AC converter. IEEE Transactions on Power Electronics 40:11863−73

doi: 10.1109/TPEL.2025.3547690
[16]

Swain AK, Neath MJ, Madawala UK, Thrimawithana DJ. 2012. A dynamic multivariable state-space model for bidirectional inductive power transfer systems. IEEE Transactions on Power Electronics 27:4772−80

doi: 10.1109/TPEL.2012.2185712
[17]

Mohamed AAS, Berzoy A, Mohammed OA. 2017. Experimental validation of comprehensive steady-state analytical model of bidirectional WPT system in EVs applications. IEEE Transactions on Vehicular Technology 66:5584−94

doi: 10.1109/TVT.2016.2634159
[18]

Hu J, Zhao J, Cui C. 2021. A wide charging range wireless power transfer control system with harmonic current to estimate the coupling coefficient. IEEE Transactions on Power Electronics 36:5082−94

doi: 10.1109/TPEL.2020.3032659
[19]

Hu J, Zhao J, Gao F. 2023. A real-time maximum efficiency tracking for wireless power transfer systems based on harmonic-informatization. IEEE Transactions on Power Electronics 38:1275−87

doi: 10.1109/TPEL.2022.3200096
[20]

Liu W, Chau KT, Lee CHT, Tian X, Jiang C. 2021. Hybrid frequency pacing for high-order transformed wireless power transfer. IEEE Transactions on Power Electronics 36:1157−70

doi: 10.1109/TPEL.2020.3002986
[21]

Tang J, Dong S, Cui C, Zhang Q. 2020. Sampled-data modeling for wireless power transfer systems. IEEE Transactions on Power Electronics 35:3173−82

doi: 10.1109/TPEL.2019.2928739
[22]

Fu N, Deng J, Wang Z, Wang W, Wang S. 2022. A hybrid mode control strategy for LCC-LCC-compensated WPT system with wide ZVS operation. IEEE Transactions on Power Electronics 37:2449−60

doi: 10.1109/TPEL.2021.3108637
[23]

He K, Liu X, Gao F, Yang X, Cheng Z, et al. 2024. Accurate discrete-time modeling and boundary analysis for high-order wireless power transfer systems. IEEE Transactions on Power Electronics 39:16839−54

doi: 10.1109/TPEL.2024.3405205
[24]

Liu J, Xu F, Sun C, Loo KH. 2023. A compact single-phase AC-DC wireless power transfer converter with active power factor correction. IEEE Transactions on Industrial Electronics 70:3685−96

doi: 10.1109/TIE.2022.3176297
[25]

Mohamed AAS, Mohammed O. 2019. Bilayer predictive power flow controller for bidirectional operation of wirelessly connected electric vehicles. IEEE Transactions on Industry Applications 55:4258−67

doi: 10.1109/TIA.2019.2908347