[1]

Wang J, Yu F, Wang X, Wang Y, Cheng Z, et al. 2024. Efficient reclamation of phosphorus from wetland plant via CaCl2/NaOH-mediated hydrothermal carbonization: insights from the evolution of phosphorus. Carbon Research 3:36

doi: 10.1007/s44246-024-00120-5
[2]

Khosravi A, Yuan Y, Liu Q, Zheng H, Hashemi M, et al. 2024. Hydrochars as slow-release phosphorus fertilizers for enhancing corn and soybean growth in an agricultural soil. Carbon Research 3:7

doi: 10.1007/s44246-023-00086-w
[3]

Bevan E, Fu J, Luberti M, Zheng Y. 2021. Challenges and opportunities of hydrothermal carbonisation in the UK; case study in Chirnside. RSC Advances 11:34870−34897

doi: 10.1039/D1RA06736B
[4]

Fernández-Sanromán Á, Lama G, Pazos M, Rosales E, Sanromán MÁ. 2021. Bridging the gap to hydrochar production and its application into frameworks of bioenergy, environmental and biocatalysis areas. Bioresource Technology 320:124399

doi: 10.1016/j.biortech.2020.124399
[5]

Zhao Q, Guo W, Zhu Y, Li D, Liu X, et al. 2025. Soil–plant-microbial evidence for the available phosphorus generation and utilization of Ca/Mg salts conditioned hydrochar from sewage sludge. Carbon Research 4:64

doi: 10.1007/s44246-025-00228-2
[6]

Usman M, Chen H, Chen K, Ren S, Clark JH, et al. 2019. Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: a review. Green Chemistry 21:1553−1572

doi: 10.1039/C8GC03957G
[7]

Feng Y, He H, Li D, He S, Yang B, et al. 2021. Biowaste hydrothermal carbonization aqueous product application in rice paddy: focus on rice growth and ammonia volatilization. Chemosphere 277:130233

doi: 10.1016/j.chemosphere.2021.130233
[8]

He H, Feng Y, Wang H, Wang B, Xie W, et al. 2022. Waste-based hydrothermal carbonization aqueous phase substitutes urea for rice paddy return: Improved soil fertility and grain yield. Journal of Cleaner Production 344:131135

doi: 10.1016/j.jclepro.2022.131135
[9]

Mau V, Neumann J, Wehrli B, Gross A. 2019. Nutrient behavior in hydrothermal carbonization aqueous phase following recirculation and reuse. Environmental Science & Technology 53:10426−10434

doi: 10.1021/acs.est.9b03080
[10]

Yao C, Pan Y, Lu H, Wu P, Meng Y, et al. 2016. Utilization of recovered nitrogen from hydrothermal carbonization process by Arthrospira platensis. Bioresource Technology 212:26−34

doi: 10.1016/j.biortech.2016.03.166
[11]

Tarhan SZ, Koçer AT, Özçimen D, Gökalp İ. 2021. Cultivation of green microalgae by recovering aqueous nutrients in hydrothermal carbonization process water of biomass wastes. Journal of Water Process Engineering 40:101783

doi: 10.1016/j.jwpe.2020.101783
[12]

Jena U, Vaidyanathan N, Chinnasamy S, Das KC. 2011. Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresource Technology 102:3380−3387

doi: 10.1016/j.biortech.2010.09.111
[13]

Li D, Chu Q, Wang J, Qian C, Chen C, et al. 2023. Effect of hydrothermal carbonization aqueous phase on soil dissolved organic matter and microbial community during rice production: a two-year experiment. Agriculture, Ecosystems & Environment 356:108637

doi: 10.1016/j.agee.2023.108637
[14]

Bonet B, Corcoll N, Acuňa V, Sigg L, Behra R, et al. 2013. Seasonal changes in antioxidant enzyme activities of freshwater biofilms in a metal polluted Mediterranean stream. Science of The Total Environment 444:60−72

doi: 10.1016/j.scitotenv.2012.11.036
[15]

Hagerthey SE, Bellinger BJ, Wheeler K, Gantar M, Gaiser E. 2011. Everglades periphyton: a biogeochemical perspective. Critical Reviews in Environmental Science and Technology 41:309−343

doi: 10.1080/10643389.2010.531218
[16]

Shahzad K, Mahmood S, Khalid A, Amir RM, Nawaz R, et al. 2025. Periphyton biofilms formulation and application for the removal of trace pollutants from water. International Biodeterioration & Biodegradation 198:106003

doi: 10.1016/j.ibiod.2025.106003
[17]

Godwin CM, Hietala DC, Lashaway AR, Narwani A, Savage PE, et al. 2017. Algal polycultures enhance coproduct recycling from hydrothermal liquefaction. Bioresource Technology 224:630−638

doi: 10.1016/j.biortech.2016.11.105
[18]

Wu Y, Liu J, Rene ER. 2018. Periphytic biofilms: a promising nutrient utilization regulator in wetlands. Bioresource Technology 248:44−48

doi: 10.1016/j.biortech.2017.07.081
[19]

Sabater S, Guasch H, Ricart M, Romaní A, Vidal G, et al. 2007. Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Analytical and Bioanalytical Chemistry 387:1425−1434

doi: 10.1007/s00216-006-1051-8
[20]

Vadeboncoeur Y, Steinman AD. 2002. Periphyton function in lake ecosystems. The Scientific World Journal 2:923031

doi: 10.1100/tsw.2002.294
[21]

Zhang Q, Wang B, Feng Y, Feng Y, Li J, et al. 2023. Process water from hydrothermal carbonization: the impacts on the aquatic dissolved organic matter feature and microbial network at the soil-water interface. Journal of Cleaner Production 397:136486

doi: 10.1016/j.jclepro.2023.136486
[22]

He H, Wang B, Wu J, Han L, Xie H, et al. 2022. Efficient disposal of the aqueous products of wet organic waste hydrothermal carbonization by paddy constructed wetlands. ACS ES&T Engineering 2:1651−1664

doi: 10.1021/acsestengg.2c00056
[23]

Li Q, Wang B, Zhang Q, Huang J, Ding S, et al. 2022. Water quality and periphyton functional response to input of dissolved manure-derived hydrochars (DHCs). Journal of Environmental Management 318:115541

doi: 10.1016/j.jenvman.2022.115541
[24]

Xu H, Chen T, Shan Y, Chen K, Ling N, et al. 2024. Recycling food waste to agriculture through hydrothermal carbonization sustains food-energy-water nexus. Chemical Engineering Journal 496:153710

doi: 10.1016/j.cej.2024.153710
[25]

Gilcreas FW. 1966. Standard methods for the examination of water and waste water. American Journal of Public Health and the Nations Health 56:387−388

doi: 10.2105/AJPH.56.3.387
[26]

Wang L, Delgado-Baquerizo M, Wang D, Isbell F, Liu J, et al. 2019. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proceedings of the National Academy of Sciences of the United States of America 116:6187−6192

doi: 10.1073/pnas.1807354116
[27]

Zhu L, Luan L, Chen Y, Wang X, Zhou S, et al. 2024. Community assembly of organisms regulates soil microbial functional potential through dual mechanisms. Global Change Biology 30:e17160

doi: 10.1111/gcb.17160
[28]

Malard LA, Mod HK, Guex N, Broennimann O, Yashiro E, et al. 2022. Comparative analysis of diversity and environmental niches of soil bacterial, archaeal, fungal and protist communities reveal niche divergences along environmental gradients in the Alps. Soil Biology and Biochemistry 169:108674

doi: 10.1016/j.soilbio.2022.108674
[29]

Jiao S, Qi J, Jin C, Liu Y, Wang Y, et al. 2022. Core phylotypes enhance the resistance of soil microbiome to environmental changes to maintain multifunctionality in agricultural ecosystems. Global Change Biology 28:6653−6664

doi: 10.1111/gcb.16387
[30]

Liang D, Wang Q, Wei N, Tang C, Sun X, et al. 2020. Biological indicators of ecological quality in typical urban river-lake ecosystems: the planktonic rotifer community and its response to environmental factors. Ecological Indicators 112:106127

doi: 10.1016/j.ecolind.2020.106127
[31]

Garland G, Banerjee S, Edlinger A, Miranda Oliveira E, Herzog C, et al. 2021. A closer look at the functions behind ecosystem multifunctionality: a review. Journal of Ecology 109:600−613

doi: 10.1111/1365-2745.13511
[32]

Albay M, Akçaalan R. 2008. Effects of water quality and hydrologic drivers on periphyton colonization on Sparganium erectum in two Turkish lakes with different mixing regimes. Environmental Monitoring and Assessment 146:171−181

doi: 10.1007/s10661-007-0069-5
[33]

Carrillo-Angeles IG, Suzán-Azpiri H, Mandujano MC, Golubov J, Martínez-Ávalos JG. 2016. Niche breadth and the implications of climate change in the conservation of the genus Astrophytum (Cactaceae). Journal of Arid Environments 124:310−317

doi: 10.1016/j.jaridenv.2015.09.001
[34]

Costa-Pereira R, Araújo MS, Souza FL, Ingram T. 2019. Competition and resource breadth shape niche variation and overlap in multiple trophic dimensions. Proceedings of the Royal Society B: Biological Sciences 286:20190369

doi: 10.1098/rspb.2019.0369
[35]

Bukaveckas P, Shaw W. 1998. Phytoplankton responses to nutrient and grazer manipulations among northeastern lakes of varying pH. Canadian Journal of Fisheries and Aquatic Sciences 55:958−966

doi: 10.1139/f97-293
[36]

Pratiwi NTM, Tajudin R. 2011. Photosynthesis of periphyton and diffusion process as source of oxygen in rich-riffle upstream waters. Microbiologi Indonesia 5:182−186

doi: 10.5454/mi.5.4.5
[37]

Hayashi M, Vogt T, Mächler L, Schirmer M. 2012. Diurnal fluctuations of electrical conductivity in a pre-alpine river: effects of photosynthesis and groundwater exchange. Journal of Hydrology 450−451:93−104

doi: 10.1016/j.jhydrol.2012.05.020
[38]

Lu H, Wan J, Li J, Shao H, Wu Y. 2016. Periphytic biofilm: a buffer for phosphorus precipitation and release between sediments and water. Chemosphere 144:2058−2064

doi: 10.1016/j.chemosphere.2015.10.129
[39]

Beheshti M, Alikhani HA, Pourbabaee AA, Etesami H, Asadi Rahmani H, et al. 2021. Periphytic biofilm and rice rhizosphere phosphate-solubilizing bacteria and fungi: a possible use for activating occluded P in periphytic biofilms in paddy fields. Rhizosphere 19:100395

doi: 10.1016/j.rhisph.2021.100395
[40]

Li JY, Deng KY, Cai SJ, Lu HL, Xu RK. 2020. Periphyton has the potential to increase phosphorus use efficiency in paddy fields. Science of The Total Environment 720:137711

doi: 10.1016/j.scitotenv.2020.137711
[41]

Sun P, Chen Y, Liu J, Xu Y, Zhou L, et al. 2022. Periphytic biofilms function as a double-edged sword influencing nitrogen cycling in paddy fields. Environmental Microbiology 24:6279−6289

doi: 10.1111/1462-2920.16277
[42]

Wu Y, Yang J, Tang J, Kerr P, Wong PK. 2017. The remediation of extremely acidic and moderate pH soil leachates containing Cu (II) and Cd (II) by native periphytic biofilm. Journal of Cleaner Production 162:846−855

doi: 10.1016/j.jclepro.2017.06.086
[43]

Feng Z, Li N, Deng Y, Yu Y, Gao Q, et al. 2024. Biogeography and assembly processes of abundant and rare soil microbial taxa in the southern part of the Qilian Mountain National Park, China. Ecology and Evolution 14:e11001

doi: 10.1002/ece3.11001
[44]

Jiao S, Chen W, Wang J, Du N, Li Q, et al. 2018. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 6:146

doi: 10.1186/s40168-018-0526-0
[45]

Davis SC, Cerra J, Williams LE. 2024. Comparative genomics of obligate predatory bacteria belonging to phylum Bdellovibrionota highlights distribution and predicted functions of lineage-specific protein families. mSphere 9:e00680-24

doi: 10.1128/msphere.00680-24
[46]

Li H, Yang S, Semenov MV, Yao F, Ye J, et al. 2021. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biology 27:2763−2779

doi: 10.1111/gcb.15593
[47]

Yang H, Cao Y, Zhang W, Pacheco JP, Liu T, et al. 2025. Prokaryotic and eukaryotic periphyton responses to warming, nutrient enrichment and small omnivorous fish: a shallow lake mesocosms experiment. Environmental Research 269:120942

doi: 10.1016/j.envres.2025.120942
[48]

Louca S, Parfrey LW, Doebeli M. 2016. Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272−1277

doi: 10.1126/science.aaf4507
[49]

Wieczorek AS, Hetz SA, Kolb S. 2014. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries. Biogeosciences 11:3339−3352

doi: 10.5194/bg-11-3339-2014
[50]

Luan L, Jiang Y, Cheng M, Dini-Andreote F, Sui Y, et al. 2020. Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nature Communications 11:6406

doi: 10.1038/s41467-020-20271-4
[51]

Feng Y, Chen R, Stegen JC, Guo Z, Zhang J, et al. 2018. Two key features influencing community assembly processes at regional scale: Initial state and degree of change in environmental conditions. Molecular Ecology 27:5238−5251

doi: 10.1111/mec.14914
[52]

Sun Y, Li X, Cao N, Duan C, Ding C, et al. 2022. Biodegradable microplastics enhance soil microbial network complexity and ecological stochasticity. Journal of Hazardous Materials 439:129610

doi: 10.1016/j.jhazmat.2022.129610
[53]

Yu Y, Wu M, Petropoulos E, Zhang J, Nie J, et al. 2019. Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China. Science of The Total Environment 656:625−633

doi: 10.1016/j.scitotenv.2018.11.359
[54]

Li Z, He J, Shen J, Li Y, Yuan Q, et al. 2025. Origin and assembly characteristics of periphyton microbes in subtropical paddy fields: a case study in Tuojia catchment in Southern China. Applied Soil Ecology 206:105839

doi: 10.1016/j.apsoil.2024.105839
[55]

Lu H, Feng Y, Wang J, Wu Y, Shao H, et al. 2016. Responses of periphyton morphology, structure, and function to extreme nutrient loading. Environmental Pollution 214:878−884

doi: 10.1016/j.envpol.2016.03.069
[56]

Hillebrand H, Kahlert M. 2001. Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnology and Oceanography 46:1881−1898

doi: 10.4319/lo.2001.46.8.1881
[57]

Wang D, Deng S, Wang J, Feng Q, Liu J, et al. 2024. Soil micro-food web complexity drives soil multifunctionality along an elevation gradient. CATENA 246:108464

doi: 10.1016/j.catena.2024.108464
[58]

Luo W, Wang P, Liu J, Tao J. 2025. Microbial keystone taxa and network complexity, rather than diversity, sustain soil multifunctionality along an elevational gradient in a subtropical karst mountain. CATENA 256:109115

doi: 10.1016/j.catena.2025.109115
[59]

Yuan Z, Ali A, Loreau M, Ding F, Liu S, et al. 2021. Divergent above- and below-ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality. Global Change Biology 27:2883−2894

doi: 10.1111/gcb.15606