[1]

Cheong MW, Tong KH, Ong JJM, Liu SQ, Curran P, et al. 2013. Volatile composition and antioxidant capacity of Arabica coffee. Food Research International 51:388−96

doi: 10.1016/j.foodres.2012.12.058
[2]

Kanokwan K, Thananya N, Pimporn L. 2016. Evaluation of antioxidant and anti-tyrosinase activities as well as stability of green and roasted coffee bean extracts from Coffea Arabica and Coffea canephora grown in Thailand. Journal of Pharmacognosy and Phytotherapy 8:182−92

doi: 10.5897/jpp2016.0413
[3]

Craparo ACW, Van Asten PJA, Läderach P, Jassogne LTP, Grab SW. 2015. Coffea Arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology 207:1−10

doi: 10.1016/j.agrformet.2015.03.005
[4]

Davis AP, Gole TW, Baena S, Moat J. 2012. The impact of climate change on indigenous Arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS One 7:e47981

doi: 10.1371/journal.pone.0047981
[5]

Esquivel P, Jiménez VM. 2012. Functional properties of coffee and coffee by-products. Food Research International 46:488−95

doi: 10.1016/j.foodres.2011.05.028
[6]

Bonilla-Hermosa VA, Duarte WF, Schwan RF. 2014. Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresource Technology 166:142−50

doi: 10.1016/j.biortech.2014.05.031
[7]

Galanakis CM. 2017. Handbook of coffee processing by-products: sustainable applications. London, England: Academic Press. pp. 1−407 www.sciencedirect.com/book/edited-volume/9780128112908/handbook-of-coffee-processing-by-products

[8]

Roussos S, de los Angeles Aquiáhuatl M, del Refugio Trejo-Hernández M, Gaime Perraud I, Favela E, et al. 1995. Biotechnological management of coffee pulp—isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Applied Microbiology and Biotechnology 42:756−62

doi: 10.1007/BF00171958
[9]

Sangta J, Wongkaew M, Tangpao T, Rachtanapun P, Chanway CP, et al. 2024. Application of coffee pulp-derived pectins as a novel coating spray to mitigate Paramyrothecium breviseta, an etiological agent inducing leaf spot disease in coffee. Process Safety and Environmental Protection 188:643−53

doi: 10.1016/j.psep.2024.06.005
[10]

Netsere A, Takala B. 2021. Progress of soil fertility and soil health management research for Arabica coffee production in Ethiopia. Plant 9:70−80

doi: 10.11648/j.plant.20210903.15
[11]

Sangta J, Wongkaew M, Tangpao T, Withee P, Haituk S, et al. 2021. Recovery of polyphenolic fraction from Arabica coffee pulp and its antifungal applications. Plants 10:1422

doi: 10.3390/plants10071422
[12]

Carmen MT, Lorena ZC, Alexander VA, Amandio V, Raúl S. 2020. Coffee pulp: an industrial by-product with uses in agriculture, nutrition and biotechnology. Reviews in Agricultural Science 8:323−42

doi: 10.7831/ras.8.0_323
[13]

Evans G. 2014. Biowaste and Biological Waste Treatment. London: Routledge. pp. 1−206. doi: 10.4324/9781315074368

[14]

Ghadge SV, Raheman H. 2006. Process optimization for biodiesel production from Mahua (Madhuca indica) oil using response surface methodology. Bioresource Technology 97:379−84

doi: 10.1016/j.biortech.2005.03.014
[15]

Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, et al. 2009. Toward a common classification approach for biorefinery systems. Biofuels, Bioproducts and Biorefining 3:534−46

doi: 10.1002/bbb.172
[16]

IEA. 2007. I. bioenergy Task 42 on biorefineries: co-production of fuels, chemicals, power and materials from biomass. Proceedings of the Minutes of the third Task meeting, Copenhagen, Denmark, 2010. Copenhagen, Denmark: IEA Bioenergy. pp. 1−37 https://backend.orbit.dtu.dk/ws/files/203952431/NEI_DK_5321.pdf

[17]

Berntsson T, Sandén B, Olsson L, Åsblad A. 2012. What is a biorefinery? In Systems Perspectives on Biorefineries 2012, ed. Sandén B. Gothenburg, Sweden: Chalmers University of Technology. pp. 16–25

[18]

Conteratto C, Artuzo FD, Benedetti Santos OI, Talamini E. 2021. Biorefinery: a comprehensive concept for the sociotechnical transition toward bioeconomy. Renewable and Sustainable Energy Reviews 151:111527

doi: 10.1016/j.rser.2021.111527
[19]

Stanhope J, Weinstein P. 2025. Sugar production leads to occupational, community and planetary health problems. EcoHealth 22:1−4

doi: 10.1007/s10393-025-01699-w
[20]

Longati AA, Manicardi T, Giordano RC, Milessi TS. 2025. Xylooligosaccharides as a tool for sugarcane bagasse valorization: integrated biorefinery modeling, simulation and life cycle assessment. Waste and Biomass Valorization 16:4835−49

doi: 10.1007/s12649-025-02947-4
[21]

Afedzi AEK, Afrakomah GS, Gyan K, Khan J, Seidu R, et al. 2025. Enhancing economic and environmental sustainability in lignocellulosic bioethanol production: key factors, innovative technologies, policy frameworks, and social considerations. Sustainability 17:499

doi: 10.3390/su17020499
[22]

Fernández MJ, Barro R, Pérez P, Fernández-Para R. 2025. Production and Quality Assessment of Olive Stones and Nut Shells Used in Domestic Combustion Facilities. Social Science Research Network (SSRN), USA. doi: 10.2139/ssrn.5162690

[23]

Karmee SK. 2018. A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Management 72:240−54

doi: 10.1016/j.wasman.2017.10.042
[24]

Jin Cho E, Gyo Lee Y, Song Y, Nguyen DT, Bae HJ. 2022. An integrated process for conversion of spent coffee grounds into value-added materials. Bioresource Technology 346:126618

doi: 10.1016/j.biortech.2021.126618
[25]

Fernando S, Adhikari S, Chandrapal C, Murali N. 2006. Biorefineries: current status, challenges, and future direction. Energy & Fuels 20:1727−37

doi: 10.1021/ef060097w
[26]

Ferreira AF. 2017. Biorefinery concept. In Biorefineries: targeting energy, high value products and waste valorisation, eds. Rabaçal M, Ferreira AF, Silva CAM, Costa M. Cham: Springer. pp. 1−20 doi: 10.1007/978-3-319-48288-0

[27]

Sadhukhan J, Ng KS, Martinez Hernandez E. 2014. Biorefineries and chemical processes: Design, integration and sustainability analysis. UK: John Wiley & Sons. 688 pp. 10.1002/9781118698129

[28]

Julio R, Albet J, Vialle C, Vaca-Garcia C, Sablayrolles C. 2017. Sustainable design of biorefinery processes: existing practices and new methodology. Biofuels, Bioproducts and Biorefining 11:373−95

doi: 10.1002/bbb.1749
[29]

Jitto P, Nakbanpote W. 2023. Food waste management in Thailand for sustainable development. In Sustainable and Circular Management of Resources and Waste Towards a Green Deal, eds. Prasad MNV, Smol M. Amsterdam: Elsevier. pp. 117−36 doi: 10.1016/b978-0-323-95278-1.00021-8

[30]

Tanzil AH, Zhang X, Wolcott M, Brandt K, Stöckle C, et al. 2021. Evaluation of dry corn ethanol bio-refinery concepts for the production of sustainable aviation fuel. Biomass and Bioenergy 146:105937

doi: 10.1016/j.biombioe.2020.105937
[31]

Kurambhatti CV, Kumar D, Rausch KD, Tumbleson ME, Singh V. 2018. Ethanol production from corn fiber separated after liquefaction in the dry grind process. Energies 11:2921

doi: 10.3390/en11112921
[32]

Bothast RJ, Schlicher MA. 2005. Biotechnological processes for conversion of corn into ethanol. Applied Microbiology and Biotechnology 67:19−25

doi: 10.1007/s00253-004-1819-8
[33]

FitzSimmons M. 1986. The new industrial agriculture: the regional integration of specialty crop production. Economic Geography 62:334−53

doi: 10.2307/143829
[34]

Khatun MS, Harrison MD, Speight RE, O’Hara IM, Zhang Z. 2020. Efficient production of fructo-oligosaccharides from sucrose and molasses by a novel Aureobasidium pullulan strain. Biochemical Engineering Journal 163:107747

doi: 10.1016/j.bej.2020.107747
[35]

Messaoudi Y, Smichi N, Bouachir F, Gargouri M. 2019. Fractionation and biotransformation of lignocelluloses-based wastes for bioethanol, xylose and vanillin production. Waste Biomass Valor 10:357−67

doi: 10.1007/s12649-017-0062-3
[36]

Bajpai P. 2018. Bioconversion of hemicelluloses. In Biotechnology for Pulp and Paper Processing. Singapore: Springer. pp. 545–60 doi: 10.1007/978-981-10-7853-8_24

[37]

Meehnian H, Jana AK, Jana MM. 2016. Effect of particle size, moisture content, and supplements on selective pretreatment of cotton stalks by Daedalea flavida and enzymatic saccharification. 3 Biotech 6:235

doi: 10.1007/s13205-016-0548-x
[38]

Chen TY, Wen JL, Wang B, Wang HM, Liu CF, et al. 2017. Assessment of integrated process based on autohydrolysis and robust delignification process for enzymatic saccharification of bamboo. Bioresource Technology 244:717−25

doi: 10.1016/j.biortech.2017.08.032
[39]

Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, et al. 2000. Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochemical Engineering Journal 6:153−62

doi: 10.1016/S1369-703X(00)00084-X
[40]

Ratnadewi AAI, Santoso AB, Sulistyaningsih E, Handayani W. 2016. Application of cassava peel and waste as raw materials for xylooligosaccharide production using endoxylanase from Bacillus subtilis of soil termite abdomen. Procedia Chemistry 18:31−38

doi: 10.1016/j.proche.2016.01.007
[41]

Murthy PS, Madhava Naidu M. 2012. Sustainable management of coffee industry by-products and value addition—a review. Resources, Conservation and Recycling 66:45−58

doi: 10.1016/j.resconrec.2012.06.005
[42]

Masssijaya SY, Lubis MAR, Nissa RC, Nurhamiyah Y, Nugroho P, et al. 2023. Utilization of spent coffee grounds as a sustainable resource for the synthesis of bioplastic composites with polylactic acid, starch, and sucrose. Journal of Composites Science 7:512

doi: 10.3390/jcs7120512
[43]

Chemat F, Vian MA, Cravotto G. 2012. Green extraction of natural products: concept and principles. International Journal of Molecular Sciences 13:8615−27

doi: 10.3390/ijms13078615
[44]

Chai YH, Yusup S, Kadir WNA, Wong CY, Rosli SS, et al. 2021. Valorization of tropical biomass waste by supercritical fluid extraction technology. Sustainability 13:233

doi: 10.3390/su13010233
[45]

Chemat F, Fabiano-Tixier AS, Vian MA, Allaf T, Vorobiev E. 2015. Solvent-free extraction of food and natural products. TrAC Trends in Analytical Chemistry 71:157−68

doi: 10.1016/j.trac.2015.02.021
[46]

Tello J, Viguera M, Calvo L. 2011. Extraction of caffeine from Robusta coffee (Coffea canephora var. Robusta) husks using supercritical carbon dioxide. The Journal of Supercritical Fluids 59:53−60

doi: 10.1016/j.supflu.2011.07.018
[47]

Ratnadewi AAI, Masruroh H, Suwardiyanto, Santoso AB. 2019. Application of coffee peel waste as raw materrial for xylooligosaccharide production. Coffee Science 14:446−54

doi: 10.25186/cs.v14i4.1610
[48]

Magdouli S, Brar SK, Blais JF. 2016. Co-culture for lipid production: advances and challenges. Biomass and Bioenergy 92:20−30

doi: 10.1016/j.biombioe.2016.06.003
[49]

Izmirlioglu G, Demirci A. 2017. Simultaneous saccharification and fermentation of ethanol from potato waste by co-cultures of Aspergillus niger and Saccharomyces cerevisiae in biofilm reactors. Fuel 202:260−70

doi: 10.1016/j.fuel.2017.04.047
[50]

Sharma S, Nair A, Sarma SJ. 2021. Biorefinery concept of simultaneous saccharification and co-fermentation: challenges and improvements. Chemical Engineering and Processing - Process Intensification 169:108634

doi: 10.1016/j.cep.2021.108634
[51]

Wyman CE. 1999. BIOMASSETHANOL: technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment 24:189−226

doi: 10.1146/annurev.energy.24.1.189
[52]

Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66:506−77

doi: 10.1128/MMBR.66.3.506-577.2002
[53]

Shumye Gebre T, Admassu Emire S, Okomo Aloo S, Chelliah R, Vijayalakshmi S, et al. 2024. Unveiling the potential of African fermented cereal-based beverages: probiotics, functional drinks, health benefits and bioactive components. Food Research International 191:114656

doi: 10.1016/j.foodres.2024.114656
[54]

Kashif M, Sabri MA, Aresta M, Dibenedetto A, Dumeignil F. 2025. Sustainable synergy: unleashing the potential of biomass in integrated biorefineries. Sustainable Energy & Fuels 9:338−400

doi: 10.1039/D4SE01293C
[55]

Sierra-Ibarra E, Vargas-Tah A, Moss-Acosta CL, Trujillo-Martínez B, Molina-Vázquez ER, et al. 2022. Co-fermentation of glucose–xylose mixtures from agroindustrial residues by ethanologenic Escherichia coli: a study on the lack of carbon catabolite repression in strain MS04. Molecules 27:8941

doi: 10.3390/molecules27248941
[56]

Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, et al. 1999. Molecular characterisation and origin of the Coffea arabica L. genome. Molecular and General Genetics MGG 261:259−66

doi: 10.1007/s004380050965
[57]

Gurram R, Al-Shannag M, Knapp S, Das T, Singsaas E, et al. 2016. Technical possibilities of bioethanol production from coffee pulp: a renewable feedstock. Clean Technologies and Environmental Policy 18:269−78

doi: 10.1007/s10098-015-1015-9
[58]

Krishnan S. 2017. Sustainable coffee production. Oxford Research Encyclopedia of Environmental Science 00:1−29

doi: 10.1093/acrefore/9780199389414.013.224
[59]

Wintgens JN. 2004. Coffee: Growing, Processing, Sustainable Production: A Guidebook for Growers, Processors, Traders, and Researchers, ed. Wintgens JN. UK: Wiley. pp. 1966–72 doi: 10.1002/9783527619627

[60]

Kleinwächter M, Bytof G, Selmar D. 2015. Coffee beans and processing. In Coffee in Health and Disease Prevention, ed. Preedy VR. Amsterdam: Elsevier. pp. 73−81 doi: 10.1016/b978-0-12-409517-5.00009-7

[61]

Poltronieri P, Rossi F. 2016. Challenges in specialty coffee processing and quality assurance. Challenges 7:19

doi: 10.3390/challe7020019
[62]

Aristizábal-Marulanda V, Chacón-Perez Y, Cardona Alzate CA. 2017. The biorefinery concept for the industrial valorization of coffee processing by-products. In Handbook of Coffee Processing By-Products, ed. Galanakis CM. Amsterdam: Elsevier: 63−92 doi: 10.1016/b978-0-12-811290-8.00003-7

[63]

Ameca GM, Cerrilla MEO, Córdoba PZ, Cruz AD, Hernández MS, et al. 2018. Chemical composition and antioxidant capacity of coffee pulp. Ciência e Agrotecnologia 42:307−13

doi: 10.1590/1413-70542018423000818
[64]

Hendroko Setyobudi R, Krido Wahono S, Gamawati Adinurani P, Wahyudi A, Widodo W, et al. 2018. Characterisation of Arabica coffee pulp - hay from kintamani - Bali as prospective biogas feedstocks. MATEC Web of Conferences 164:01039

doi: 10.1051/matecconf/201816401039
[65]

Rodríguez-Durán LV, Ramírez-Coronel MA, Aranda-Delgado E, Nampoothiri KM, Favela-Torres E, et al. 2014. Soluble and bound hydroxycinnamates in coffee pulp (Coffea arabica) from seven cultivars at three ripening stages. Journal of Agricultural and Food Chemistry 62:7869−76

doi: 10.1021/jf5014956
[66]

Ramirez-Martinez JR. 1988. Phenolic compounds in coffee pulp: quantitative determination by HPLC. Journal of the Science of Food and Agriculture 43:135−44

doi: 10.1002/jsfa.2740430204
[67]

Murthy PS, Naidu MM. 2012. Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food and Bioprocess Technology 5:897−903

doi: 10.1007/s11947-010-0363-z
[68]

Esquivel P, Viñas M, Steingass CB, Gruschwitz M, Guevara E, et al. 2020. Coffee (Coffea arabica L.) by-products as a source of carotenoids and phenolic compounds—evaluation of varieties with different peel color. Frontiers in Sustainable Food Systems 4:590597

doi: 10.3389/fsufs.2020.590597
[69]

Sangta J, Ruksiriwanich W, Chittasupho C, Sringarm K, Rachtanapun P, et al. 2024. Utilization of the sugar fraction from Arabica coffee pulp as a carbon source for bacteria producing cellulose and cytotoxicity with human keratinocyte. Preparative Biochemistry & Biotechnology 54:587−96

doi: 10.1080/10826068.2023.2258195
[70]

Abdul Khalil HPS, Bhat AH, Ireana Yusra AF. 2012. Green composites from sustainable cellulose nanofibrils: a review. Carbohydrate Polymers 87:963−79

doi: 10.1016/j.carbpol.2011.08.078
[71]

Mohanty AK, Vivekanandhan S, Pin JM, Misra M. 2018. Composites from renewable and sustainable resources: challenges and innovations. Science 362:536−42

doi: 10.1126/science.aat9072
[72]

Heeger A, Kosińska-Cagnazzo A, Cantergiani E, Andlauer W. 2017. Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chemistry 221:969−75

doi: 10.1016/j.foodchem.2016.11.067
[73]

Shenoy D, Pai A, Vikas RK, Neeraja HS, Deeksha JS, et al. 2011. A study on bioethanol production from cashew apple pulp and coffee pulp waste. Biomass and Bioenergy 35:4107−11

doi: 10.1016/j.biombioe.2011.05.016
[74]

Menezes EGT, do Carmo JR, Menezes AGT, Alves JGLF, Pimenta CJ, et al. 2013. Use of different extracts of coffee pulp for the production of bioethanol. Applied Biochemistry and Biotechnology 169:673−87

doi: 10.1007/s12010-012-0030-0
[75]

Muzaifa M, Andini R, Sulaiman MI, Abubakar Y, Rahmi F, et al. 2021. Novel utilization of coffee processing by-products: kombucha cascara originated from ‘Gayo-Arabica’. IOP Conference Series: Earth and Environmental Science 644:012048

doi: 10.1088/1755-1315/644/1/012048
[76]

Sommano SR, Jantrawut P, Sangta J, Chanabodeechalermrung B, Sunanta P, et al. 2023. Utilization of coffee pulp for the production of sustainable cellulosic composite and plant-based hydrogel as a potential human wound dressing. Food Structure 37:100347

doi: 10.1016/j.foostr.2023.100347
[77]

Hameed A, Hussain SA, Suleria HAR. 2020. "Coffee bean-related" agroecological factors affecting the coffee. In Co-Evolution of Secondary Metabolites, eds. Mérillon JM, Ramawat KG. Cham: Springer International Publishing. pp. 641−705 doi: 10.1007/978-3-319-96397-6_21

[78]

Kieu Tran TM, Kirkman T, Nguyen M, Van Vuong Q. 2020. Effects of drying on physical properties, phenolic compounds and antioxidant capacity of Robusta wet coffee pulp (Coffea canephora). Heliyon 6:e04498

doi: 10.1016/j.heliyon.2020.e04498
[79]

Jiamjariyatam R, Samosorn S, Dolsophon K, Tantayotai P, Lorliam W, et al. 2022. Effects of drying processes on the quality of coffee pulp. Journal of Food Processing and Preservation 46:e16876

doi: 10.1111/jfpp.16876
[80]

Tripathi S, Murthy PS. 2023. Coffee oligosaccharides and their role in health and wellness. Food Research International 173:113288

doi: 10.1016/j.foodres.2023.113288
[81]

Campos-Vega R, Arreguín-Campos A, Cruz-Medrano MA, del Castillo Bilbao MD. 2020. Spent coffee (Coffea arabica L.) grounds promote satiety and attenuate energy intake: a pilot study. Journal of Food Biochemistry 44:e13204

doi: 10.1111/jfbc.13204
[82]

Getachew MT, Hiruy AM, Mazharuddin MM, Mamo TT, Feseha TA, et al. 2023. Effect of chemical and biological additives on production of biogas from coffee pulp silage. Scientific Reports 13:12199

doi: 10.1038/s41598-023-39163-w
[83]

Reichembach LH, Kaminski GK, Maurer JBB, de Oliveira Petkowicz CL. 2024. Fractionation and characterization of cell wall polysaccharides from coffee (Coffea arabica L.) pulp. Carbohydrate Polymers 327:121693

doi: 10.1016/j.carbpol.2023.121693
[84]

Geremu M, Tola YB, Sualeh A. 2016. Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture 3:25

doi: 10.1186/s40538-016-0077-1
[85]

González-González GM, Palomo-Ligas L, Nery-Flores SD, Ascacio-Valdés JA, Sáenz-Galindo A, et al. 2022. Coffee pulp as a source for polyphenols extraction using ultrasound, microwave, and green solvents. Environmental Quality Management 32:451−61

doi: 10.1002/tqem.21903
[86]

Alvarado-Ambriz S, Metropolitana-Iztapalapa UA, Lobato-Calleros C, Hernández-Rodríguez L, Vernon-Carter EJ. 2020. Wet coffee processing waste as an alternative to produce extracts with antifungal activity: in vitro and in vivo valorization. Revista Mexicana de Ingeniería Química 19:135−49

doi: 10.24275/rmiq/bio1612
[87]

Londoño-Hernandez L, Ruiz HA, Cristina Ramírez T, Ascacio JA, Rodríguez-Herrera R, et al. 2020. Fungal detoxification of coffee pulp by solid-state fermentation. Biocatalysis and Agricultural Biotechnology 23:101467

doi: 10.1016/j.bcab.2019.101467
[88]

Guthrie F, Wang Y, Neeve N, Quek SY, Mohammadi K, et al. 2020. Recovery of phenolic antioxidants from green kiwifruit peel using subcritical water extraction. Food and Bioproducts Processing 122:136−44

doi: 10.1016/j.fbp.2020.05.002
[89]

Ramirez-Coronel MA, Marnet N, Kumar Kolli VS, Roussos S, Guyot S, et al. 2004. Characterization and estimation of proanthocyanidins and other phenolics in coffee pulp (Coffea arabica) by Thiolysis−High-performance liquid chromatography. Journal of Agricultural and Food Chemistry 52:1344−49

doi: 10.1021/jf035208t
[90]

Guglielmetti A, Fernandez-Gomez B, Zeppa G, Del Castillo MD. 2019. Nutritional quality, potential health promoting properties and sensory perception of an improved gluten-free bread formulation containing inulin, rice protein and bioactive compounds extracted from coffee byproducts. Polish Journal of Food and Nutrition Sciences 69:157−66

doi: 10.31883/pjfns-2019-0012
[91]

Chamyuang S, Duangphet S, Owatworakit A, Intatha U, Nacha J, et al. 2021. Preparation of pectin films from coffee cherry and its antibacterial activity. Trends in Sciences 18:34

doi: 10.48048/tis.2021.34
[92]

Dao DN, Le PH, Do DX, Dang TMQ, Nguyen SK, et al. 2023. Pectin and cellulose extracted from coffee pulps and their potential in formulating biopolymer films. Biomass Conversion and Biorefinery 13:13117−25

doi: 10.1007/s13399-022-02339-x
[93]

Jaisan C, Punbusayakul N. 2016. Development of coffee pulp extract-incorporated chitosan film and its antimicrobial and antioxidant activities. KKU Research Journal 21:140−49

doi: 10.14456/KKURJ.2016.17
[94]

Jiamjariyatam R, Samosorn S, Dolsophon K, Tantayotai P, Lorliam W, et al. 2024. Development of cascara tea from coffee cherry pulp. Journal of Culinary Science & Technology 22:1111−26

doi: 10.1080/15428052.2022.2106336
[95]

El Achaby M, Ruesgas-Ramón M, Fayoud NH, Figueroa-Espinoza MC, Trabadelo V, et al. 2019. Bio-sourced porous cellulose microfibrils from coffee pulp for wastewater treatment. Cellulose 26:3873−89

doi: 10.1007/s10570-019-02344-w
[96]

Ulloa Rojas JB, Verreth JAJ. 2002. Growth, feed utilization and nutrient digestibility in tilapia fingerlings (Oreochromis aureus Steindachner) fed diets containing bacteria-treated coffee pulp. Aquaculture Research 33:189−95

doi: 10.1046/j.1365-2109.2002.00655.x
[97]

Murthy PS, Manjunatha MR, Sulochannama G, Naidu MM. 2012. Extraction, characterization and bioactivity of coffee anthocyanins. European Journal of Biological Sciences 4:13−19

doi: 10.5829/idosi.ejbs.2012.4.1.6149
[98]

Khamsaw P, Lumsangkul C, Karunarathna A, Onsa NE, Kawichai S, et al. 2022. Recovery of orange peel essential oil from ‘Sai-namphaung’ tangerine fruit drop biomass and its potential use as Citrus Fruit postharvest diseases control. Agriculture 12:701

doi: 10.3390/agriculture12050701
[99]

Bermúdez-Savón RC, García-Oduardo N, Serrano-Alberni M. 2013. Una tecnología sostenible, aporte a la seguridad alimentaria. Revista de Tecnología e Investigación (RTQ) 33:181−92

[100]

Maina S, Kachrimanidou V, Koutinas A. 2017. A roadmap towards a circular and sustainable bioeconomy through waste valorization. Current Opinion in Green and Sustainable Chemistry 8:18−23

doi: 10.1016/j.cogsc.2017.07.007
[101]

Soh L, Eckelman MJ. 2016. Green solvents in biomass processing. ACS Sustainable Chemistry & Engineering 4:5821−37

doi: 10.1021/acssuschemeng.6b01635
[102]

Larrauri JA, Rupérez P, Borroto B, Saura-Calixto F. 1996. Mango peels as a new tropical fibre: preparation and characterization. LWT - Food Science and Technology 29:729−33

doi: 10.1006/fstl.1996.0113
[103]

Ng HS, Kee PE, Yim HS, Chen PT, Wei YH, et al. 2020. Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource Technology 302:122889

doi: 10.1016/j.biortech.2020.122889
[104]

Curran T, Williams ID. 2012. A zero waste vision for industrial networks in Europe. Journal of Hazardous Materials 207−208:3−7

doi: 10.1016/j.jhazmat.2011.07.122
[105]

Korhonen J, Honkasalo A, Seppälä J. 2018. Circular economy: the concept and its limitations. Ecological Economics 143:37−46

doi: 10.1016/j.ecolecon.2017.06.041
[106]

Alves RC, Rodrigues F, Antónia Nunes M, Vinha AF, Oliveira MBPP. 2017. State of the art in coffee processing by-products. In Handbook of Coffee Processing By-Products, ed. Galanakis CM. Amsterdam: Elsevier. pp. 1−26 doi: 10.1016/b978-0-12-811290-8.00001-3

[107]

Silva NC, da Fonseca YA, de Camargos AB, Lima AL, Ribeiro MC, et al. 2022. Pretreatment and enzymatic hydrolysis of coffee husk for the production of potentially fermentable sugars. Journal of Chemical Technology & Biotechnology 97:676−88

doi: 10.1002/jctb.6950
[108]

Heredia Salgado MA, Säumel I, Cianferoni A, Tarelho LAC. 2021. Potential for farmers’ cooperatives to convert coffee husks into biochar and promote the bioeconomy in the north Ecuadorian Amazon. Applied Sciences 11:4747

doi: 10.3390/app11114747
[109]

Hernández-Varela JD, Medina DI. 2023. Revalorization of coffee residues: advances in the development of eco-friendly biobased potential food packaging. Polymers 15:2823

doi: 10.3390/polym15132823
[110]

Andrade KS, Gonçalvez RT, Maraschin M, Ribeiro-do-Valle RM, Martínez J, et al. 2012. Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition. Talanta 88:544−52

doi: 10.1016/j.talanta.2011.11.031
[111]

Edyvean RGJ, Apiwatanapiwat W, Vaithanomsat P, Boondaeng A, Janchai P, et al. 2023. The bio-circular green economy model in Thailand – a comparative review. Agriculture and Natural Resources 57:51−64

doi: 10.34044/j.anres.2023.57.1.06