[1]

Li H, Liu W, Han Z, Bingwa N, Wang T, et al. 2024. Microwave absorbing alkaline catalyst for biodiesel production via MIL-100 (Fe): catalytic optimization, characterizations, kinetics, and distillation simulation. Chemical Engineering Journal 495:153559

doi: 10.1016/j.cej.2024.153559
[2]

Bian H, Jiang N, Song X, Wu R, Wu Q, et al. 2025. Micro/nano scale Laves phases enhanced hydrogen trapping in as-cast high entropy alloy for hydrogen storage applications. Materials Science and Engineering: A 945:149003

doi: 10.1016/j.msea.2025.149003
[3]

Liu W, Guo H, Guo D, Han X, Bingwa N, et al. 2025. Microwave-absorbing CaO-CNT catalyst for enhanced transesterification: bridging dielectric loss to energy-efficient fatty acid methyl ester production. ACS Sustainable Chemistry & Engineering 13:18795−18809

doi: 10.1021/acssuschemeng.5c07701
[4]

Faraj K, Khaled M, Faraj J, Hachem F, Castelain C. 2020. Phase change material thermal energy storage systems for cooling applications in buildings: a review. Renewable and Sustainable Energy Reviews 119:109579

doi: 10.1016/j.rser.2019.109579
[5]

Zhao S, Li J, He M, Song S. 2022. Effects of dopamine-modified and organic intercalation on the thermophysical properties of octadecane/expanded vermiculite composite phase change materials. ACS Omega 7:13538−13545

doi: 10.1021/acsomega.1c06815
[6]

Su W, Darkwa J, Kokogiannakis G. 2015. Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews 48:373−391

doi: 10.1016/j.rser.2015.04.044
[7]

Tian Y, Yang R, Pan H, Zheng N, Huang X. 2025. Biomass-based shape-stabilized phase change materials for thermal energy storage and multiple energy conversion. Nano Energy 133:110440

doi: 10.1016/j.nanoen.2024.110440
[8]

Nguyen GT, Thi NT, Nho NT, Hanh LTD, Tuan HNA. 2024. A novel stearic acid/expanded graphite/Fe3O4 composite phase change material with effective photo/electro/magneto-triggered thermal conversion and storage for thermotherapy applications. Journal of Science: Advanced Materials and Devices 9:100792

doi: 10.1016/j.jsamd.2024.100792
[9]

Ma Y, Wei R, Zuo H, Zuo Q, Chen Y, et al. 2023. Development of hierarchical MOF-based composite phase change materials with enhanced latent heat storage for low-temperature battery thermal optimization. Energy 283:129001

doi: 10.1016/j.energy.2023.129001
[10]

Bordoloi U, Das D, Kashyap D, Patwa D, Bora P, et al. 2022. Synthesis and comparative analysis of biochar based form-stable phase change materials for thermal management of buildings. Journal of Energy Storage 55:105801

doi: 10.1016/j.est.2022.105801
[11]

Lu W, Si Y, Zhao C, Chen T, Li C, et al. 2024. Biomass-derived carbon applications in the field of supercapacitors: progress and prospects. Chemical Engineering Journal 495:153311

doi: 10.1016/j.cej.2024.153311
[12]

Atinafu DG, Yun BY, Choi JY, Yuan X, Ok YS, et al. 2023. Introduction of sustainable food waste-derived biochar for phase change material assembly to enhance energy storage capacity and enable circular economy. Journal of Energy Storage 72:108338

doi: 10.1016/j.est.2023.108338
[13]

Liu S, Peng S, Zhang B, Xue B, Yang Z, et al. 2022. Effects of biochar pyrolysis temperature on thermal properties of polyethylene glycol/biochar composites as shape-stable biocomposite phase change materials. RSC Advances 12:9587−9598

doi: 10.1039/d1ra09167k
[14]

Liao J, Hou B, Huang H. 2022. Preparation, properties and drug controlled release of chitin-based hydrogels: an updated review. Carbohydrate Polymers 283:119177

doi: 10.1016/j.carbpol.2022.119177
[15]

Wang J, Guo W, Ma X, Yan X, Yao H, et al. 2023. Synthesis of shape stabilized phase change material with high thermal conductivity via in situ N-doped carbon derived from chitin. Journal of Energy Storage 60:106634

doi: 10.1016/j.est.2023.106634
[16]

Wijesena RN, Tissera ND, Rathnayaka VWSG, Rajapakse HD, de Silva RM, et al. 2020. Shape-stabilization of polyethylene glycol phase change materials with chitin nanofibers for applications in "smart" windows. Carbohydrate Polymers 237:116132

doi: 10.1016/j.carbpol.2020.116132
[17]

Sun Z, Zhang H, Zhang Q, Jing R, Wu B, et al. 2022. Shape-stabilized phase change composites enabled by lightweight and bio-inspired interconnecting carbon aerogels for efficient energy storage and photo-thermal conversion. Journal of Materials Chemistry A 10(25):13556−13569

doi: 10.1039/D2TA02024F
[18]

Kong X, Nie R, Yuan J. 2025. A review of shape stabilized aerogel-based phase change materials for preparation, classification and applications. Energy and Built Environment 6(2):230−247

doi: 10.1016/j.enbenv.2023.11.001
[19]

Qin Q, Li M, Lan P, Liao Y, Sun S, et al. 2021. Novel CaCO3/chitin aerogel: synthesis and adsorption performance toward Congo red in aqueous solutions. International Journal of Biological Macromolecules 181:786−792

doi: 10.1016/j.ijbiomac.2021.03.116
[20]

Song X, Cui S, Li Z, Jiao Y, Zhou C. 2018. Fabrication of chitin/graphene oxide composite sponges with higher bilirubin adsorption capacity. Journal of Materials Science: Materials in Medicine 29:108

doi: 10.1007/s10856-018-6107-8
[21]

Das D, Bordoloi U, Muigai HH, Kalita P. 2020. A novel form stable PCM based bio composite material for solar thermal energy storage applications. Journal of Energy Storage 30:101403

doi: 10.1016/j.est.2020.101403
[22]

Wen R, Liu Y, Yang C, Zhu X, Huang Z, et al. 2021. Enhanced thermal properties of stearic acid/carbonized maize straw composite phase change material for thermal energy storage in buildings. Journal of Energy Storage 36:102420

doi: 10.1016/j.est.2021.102420
[23]

Wang H, He L, Hou Y. 2024. Analysis of thermophysical properties of polyethylene glycol/SiO2/graphene shape-stabilized phase change materials through experimental research and molecular dynamics simulation. Materials Today Communications 41:110870

doi: 10.1016/j.mtcomm.2024.110870
[24]

Wu G, Bing N, Li Y, Xie H, Yu W. 2022. Three-dimensional directional cellulose-based carbon aerogels composite phase change materials with enhanced broadband absorption for light-thermal-electric conversion. Energy Conversion and Management 256:115361

doi: 10.1016/j.enconman.2022.115361
[25]

Uemura T, Yanai N, Watanabe S, Tanaka H, Numaguchi R, et al. 2010. Unveiling thermal transitions of polymers in subnanometre pores. Nature Communications 1:83

doi: 10.1038/ncomms1091
[26]

Wang S, Wang S, Xu D, Ding H, Xie J, et al. 2025. Multifunctional composite phase change material with electrostatic self-assembly structure based on carboxylated multi-walled carbon nanotubes. Carbon 231:119763

doi: 10.1016/j.carbon.2024.119763
[27]

Umair MM, Zhang Y, Iqbal K, Zhang S, Tang B. 2019. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–a review. Applied Energy 235:846−873

doi: 10.1016/j.apenergy.2018.11.017
[28]

Sun M, Sun F, Di H, Wu C, Sheng H, et al. 2024. High value utilization of waste peanut shell: prepared novel shape stable composite phase change materials with high thermal conductivity. Materials Today Sustainability 26:100707

doi: 10.1016/j.mtsust.2024.100707
[29]

Pirtsul AE, Krainov A, Rubtsova MI, Mendgaziev RI, Cherednichenko KA, et al. 2022. Ag-modified microfibrillar cellulose as support in composite phase change materials with enhanced thermal transfer properties. Materials Letters 308:131173

doi: 10.1016/j.matlet.2021.131173
[30]

Xie B, Li C, Zhang B, Yang L, Xiao G, et al. 2020. Evaluation of stearic acid/coconut shell charcoal composite phase change thermal energy storage materials for tankless solar water heater. Energy and Built Environment 1:187−198

doi: 10.1016/j.enbenv.2019.08.003
[31]

Zhang X, Wang X, Zhong C, Lin Q. 2020. Ultrathin-wall mesoporous surface carbon foam stabilized stearic acid as a desirable phase change material for thermal energy storage. Journal of Industrial and Engineering Chemistry 85:208−218

doi: 10.1016/j.jiec.2020.02.003
[32]

Wu S, Chen Y, Chen Z, Wang J, Cai M, et al. 2021. Shape-stabilized phase change material with highly thermal conductive matrix developed by one-step pyrolysis method. Scientific Reports 11:822

doi: 10.1038/s41598-021-80964-8
[33]

Jing H, Chen T, Shao W, Ma C, Ji R, et al. 2024. Flexible electrospun porous carbon nanofiber@PEG phase change nanofibrous membrane for advanced solar-/electro-thermal energy conversion and storage. Journal of Energy Storage 104:114608

doi: 10.1016/j.est.2024.114608
[34]

Gao L, Ying D, Shen T, Zheng Y, Cai J, et al. 2020. Two-dimensional wrinkled N-rich carbon nanosheets fabricated from chitin via fast pyrolysis as optimized electrocatalyst. ACS Sustainable Chemistry & Engineering 8:10881−10891

doi: 10.1021/acssuschemeng.0c03104
[35]

Wan JN, Chen QY, Jiang JC, Guo W, Zuo X, et al. 2024. Sustainable versatile chitin aerogels: Facile synthesis, structural control and high-efficiency acoustic absorption. RSC Advances 14:22229−22237

doi: 10.1039/d4ra03687e
[36]

Ding J, Wu X, Shen X, Cui S, Chen X. 2020. A promising form-stable phase change material composed of C/SiO2 aerogel and palmitic acid with large latent heat as short-term thermal insulation. Energy 210:118478

doi: 10.1016/j.energy.2020.118478
[37]

Wang J, Li H, Bingwa N, Yu H, Li G, et al. 2024. Comparison of UiO-66(Zr) and its derivate in shape stabilized phase change materials: thermal storage performance and characterizations. Solar Energy Materials and Solar Cells 277:113127

doi: 10.1016/j.solmat.2024.113127
[38]

Huang J, Zhong Y, Lu A, Zhang L, Cai J. 2020. Temperature and time-dependent self-assembly and gelation behavior of chitin in aqueous KOH/urea solution. Giant 4:100038

doi: 10.1016/j.giant.2020.100038
[39]

Li A, Dong C, Dong W, Atinafu DG, Gao H, et al. 2018. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance. ACS Applied Materials & Interfaces 10:32093−32101

doi: 10.1021/acsami.8b09541
[40]

Chen T, Liu C, Mu P, Sun H, Zhu Z, et al. 2020. Fatty amines/graphene sponge form-stable phase change material composites with exceptionally high loading rates and energy density for thermal energy storage. Chemical Engineering Journal 382:122831

doi: 10.1016/j.cej.2019.122831
[41]

Jia Y, Peng B, Li X, Huang S, Zhang X, et al. 2024. Fe catalytic graphitisation to prepare biomass derived graphitic matrix based composite phase change materials for photothermal conversion and storage. Journal of Energy Storage 103:114374

doi: 10.1016/j.est.2024.114374
[42]

Cheng Q, Huang M, Xiao A, Xu Z, Chen X, et al. 2021. Recyclable nitrogen-containing chitin-derived carbon microsphere as sorbent for neonicotinoid residues adsorption and analysis. Carbohydrate Polymers 260:117770

doi: 10.1016/j.carbpol.2021.117770
[43]

Zhai Z, Ren B, Xu Y, Wang S, Zhang L, et al. 2021. Nitrogen self-doped carbon aerogels from chitin for supercapacitors. Journal of Power Sources 481:228976

doi: 10.1016/j.jpowsour.2020.228976
[44]

Hekimoğlu G, Sarı A, Arunachalam S, Arslanoğlu H, Gencel O. 2021. Porous biochar/heptadecane composite phase change material with leak-proof, high thermal energy storage capacity and enhanced thermal conductivity. Powder Technology 394:1017−1025

doi: 10.1016/j.powtec.2021.09.030
[45]

Sarı A, Hekimoğlu G, Karabayır Y, Sharma RK, Arslanoğlu H, et al. 2022. Capric-stearic acid mixture impregnated carbonized waste sugar beet pulp as leak-resistive composite phase change material with effective thermal conductivity and thermal energy storage performance. Energy 247:123501

doi: 10.1016/j.energy.2022.123501
[46]

Zhang T, Zhang T, Zhang J, Zhang D, Guo P, et al. 2021. Design of stearic acid/graphene oxide-attapulgite aerogel shape-stabilized phase change materials with excellent thermophysical properties. Renewable Energy 165:504−513

doi: 10.1016/j.renene.2020.11.030
[47]

Wen R, Chen B, Yin L, Yuan X, Ma A. 2024. Thermal properties and non-isothermal crystallization behavior of ternary eutectic phase change material for thermal energy storage. Journal of Energy Storage 84:110566

doi: 10.1016/j.est.2024.110566
[48]

Yang B, Zhang T, Wang J, Lv J, Zheng Y, et al. 2022. Novel properties of stearic acid/MXene - Graphene oxide shape - Stabilized phase change material: ascended phase transition temperature and hierarchical transition. Solar Energy Materials and Solar Cells 247:111948

doi: 10.1016/j.solmat.2022.111948
[49]

Wang D, Dong Y, Sun W, Lu N, Lan X. 2021. Nanosized n-eicosane as phase change materials: phase behaviors and phase transition kinetics. Chemical Thermodynamics and Thermal Analysis 3−4:100019

doi: 10.1016/j.ctta.2021.100019
[50]

Chen X, Gao H, Xing L, Dong W, Li A, et al. 2019. Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials. Energy Storage Materials 18:280−288

doi: 10.1016/j.ensm.2018.08.024