[1]

European Tyre & Rubber Manufactures' Association. 2020. End of life tyres management—Europe status

[2]

Lee HS, Yoo JW. 2011. Removal of polyaromatic hydrocarbons from scrap tires by solvent extraction. Korean Journal of Chemical Engineering 28:1065−1069

doi: 10.1007/s11814-010-0462-6
[3]

Manchón-Vizuete E, Macías-García A, Nadal Gisbert A, Fernández-González C, Gómez-Serrano V. 2004. Preparation of mesoporous and macroporous materials from rubber of tyre wastes. Microporous and Mesoporous Materials 67:35−41

doi: 10.1016/j.micromeso.2003.10.002
[4]

Wang WL, Chang JM, Cai LP, Shi SQ. 2014. Quality improvement of pyrolysis oil from waste rubber by adding sawdust. Waste Management 34:2603−2610

doi: 10.1016/j.wasman.2014.08.016
[5]

Choi GG, Jung SH, Oh SJ, Kim JS. 2014. Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char. Fuel Processing Technology 123:57−64

doi: 10.1016/j.fuproc.2014.02.007
[6]

Llompart M, Sanchez-Prado L, Pablo Lamas J, Garcia-Jares C, Roca E, et al. 2013. Hazardous organic chemicals in rubber recycled tire playgrounds and pavers. Chemosphere 90:423−431

doi: 10.1016/j.chemosphere.2012.07.053
[7]

Aatmeeyata, Sharma M. 2010. Polycyclic aromatic hydrocarbons, elemental and organic carbon emissions from tire-wear. Science of The Total Environment 408:4563−4568

doi: 10.1016/j.scitotenv.2010.06.011
[8]

Kanematsu M, Hayashi A, Denison MS, Young TM. 2009. Characterization and potential environmental risks of leachate from shredded rubber mulches. Chemosphere 76:952−958

doi: 10.1016/j.chemosphere.2009.04.026
[9]

Stephensen E, Adolfsson-Erici M, Celander M, Hulander M, Parkkonen J, et al. 2003. Biomarker responses and chemical analyses in fish indicate leakage of polycyclic aromatic hydrocarbons and other compounds from car tire rubber. Environmental Toxicology and Chemistry 22:2926−2931

doi: 10.1897/02-444
[10]

Wik A, Dave G. 2005. Environmental labeling of car tires—toxicity to Daphnia magna can be used as a screening method. Chemosphere 58:645−651

doi: 10.1016/j.chemosphere.2004.08.103
[11]

Zhang JJ, Han IK, Zhang L, Crain W. 2008. Hazardous chemicals in synthetic turf materials and their bioaccessibility in digestive fluids. Journal of Exposure Science & Environmental Epidemiology 18:600−607

doi: 10.1038/jes.2008.55
[12]

Bocca B, Forte G, Petrucci F, Costantini S, Izzo P. 2009. Metals contained and leached from rubber granulates used in synthetic turf areas. Science of The Total Environment 407:2183−2190

doi: 10.1016/j.scitotenv.2008.12.026
[13]

Grynkiewicz-Bylina B, Rakwic B, Słomka-Słupik B. 2022. Tests of rubber granules used as artificial turf for football fields in terms of toxicity to human health and the environment. Scientific Reports 12:6683

doi: 10.1038/s41598-022-10691-1
[14]

Cipullo S, Nawar S, Mouazen AM, Campo-Moreno P, Coulon F. 2019. Predicting bioavailability change of complex chemical mixtures in contaminated soils using visible and near-infrared spectroscopy and random forest regression. Scientific Reports 9:4492

doi: 10.1038/s41598-019-41161-w
[15]

Hulscher LM, Van Loon S, Van Gestel CAM. 2025. Toxicity of two different size classes of tire particles from mixed end-of-life car tires to the springtail Sinella curviseta. Chemosphere 386:144613

doi: 10.1016/j.chemosphere.2025.144613
[16]

Hale SE, Lehmann J, Rutherford D, Zimmerman AR, Bachmann RT, et al. 2012. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental Science & Technology 46:2830−2838

doi: 10.1021/es203984k
[17]

ISO. n.d. ISO 11267:1999. Soil quality - Inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants

[18]

MicroBioTests Inc. 2004. Phytotoxkit, Seed germination and early growth microbiotest with higher plants. Standard Operation Procedure. Nazareth, Belgium: MicroBioTests Inc. pp 1–24

[19]

Council of the European Union. 2002. Council Decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Official Journal of the European Union L 11:27–49

[20]

Microbics Corporation. 1992. Microtox manual. Carlsbad, CA: SDI, Microbics Corporation

[21]

Hawthorne SB, Jonker MTO, van der Heijden SA, Grabanski CB, Azzolina NA, et al. 2011. Measuring picogram per liter concentrations of freely dissolved parent and alkyl PAHs (PAH-34), using passive sampling with polyoxymethylene. Analytical Chemistry 83:6754−6761

doi: 10.1021/ac201411v
[22]

Chen SJ, Su HB, Chang JE, Lee WJ, Huang KL, et al. 2007. Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires. Atmospheric Environment 41:1209−1220

doi: 10.1016/j.atmosenv.2006.09.041
[23]

Boonyatumanond R, Murakami M, Wattayakorn G, Togo A, Takada H. 2007. Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. Science of The Total Environment 384:420−432

doi: 10.1016/j.scitotenv.2007.06.046
[24]

Skoczyńska E, Leonards PEG, Llompart M, de Boer J. 2021. Analysis of recycled rubber: development of an analytical method and determination of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds in rubber matrices. Chemosphere 276:130076

doi: 10.1016/j.chemosphere.2021.130076
[25]

Lu F, Su Y, Ji Y, Ji R. 2021. Release of zinc and polycyclic aromatic hydrocarbons from tire crumb rubber and toxicity of leachate to Daphnia magna: effects of tire source and photoaging. Bulletin of Environmental Contamination and Toxicology 107:651−656

doi: 10.1007/s00128-021-03123-9
[26]

Arp HPH, Lundstedt S, Josefsson S, Cornelissen G, Enell A, et al. 2014. Native Oxy-PAHs, N-PACs, and PAHs in historically contaminated soils from Sweden, Belgium, and France: their soil-porewater partitioning behavior, bioaccumulation in Enchytraeus crypticus, and bioavailability. Environmental Science & Technology 48:11187−11195

doi: 10.1021/es5034469
[27]

Arp HPH, Hale SE, Elmquist Kruså M, Cornelissen G, Grabanski CB, et al. 2015. Review of polyoxymethylene passive sampling methods for quantifying freely dissolved porewater concentrations of hydrophobic organic contaminants. Environmental Toxicology and Chemistry 34:710−720

doi: 10.1002/etc.2864
[28]

Cornelissen G, Arp HPH, Pettersen A, Hauge A, Breedveld GD. 2008. Assessing PAH and PCB emissions from the relocation of harbour sediments using equilibrium passive samplers. Chemosphere 72:1581−1587

doi: 10.1016/j.chemosphere.2008.04.041
[29]

Arp HPH, Azzolina NA, Cornelissen G, Hawthorne SB. 2011. Predicting pore water EPA-34 PAH concentrations and toxicity in pyrogenic-impacted sediments using pyrene content. Environmental Science & Technology 45:5139−5146

doi: 10.1021/es2007935
[30]

Raczkiewicz M, Mašek O, Ok YS, Oleszczuk P. 2024. Size reduction of biochar to nanoscale decrease polycyclic aromatic hydrocarbons (PAHs) and metals content and bioavailability in nanobiochar. Science of The Total Environment 937:173372

doi: 10.1016/j.scitotenv.2024.173372
[31]

Oleszczuk P, Hale SE, Lehmann J, Cornelissen G. 2012. Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresource Technology 111:84−91

doi: 10.1016/j.biortech.2012.02.030
[32]

Sjoeholm KK, Schmidt SN, Jahnke A, Svensmark B, Mayer P. 2018. Equilibrium sampling reveals increasing thermodynamic potential of polycyclic aromatic hydrocarbons during sewage sludge digestion. Chemosphere 207: 421−429

doi: 10.1016/j.chemosphere.2018.05.104
[33]

Stefaniuk M, Oleszczuk P. 2016. The total and freely dissolved polycyclic aromatic hydrocarbons content in residues from biogas production. Environmental Pollution 208:787−795

doi: 10.1016/j.envpol.2015.10.059
[34]

Chen X, Yang L, Myneni SCB, Deng Y. 2019. Leaching of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge-derived biochar. Chemical Engineering Journal 373:840−845

doi: 10.1016/j.cej.2019.05.059
[35]

Hale SE, Werner D. 2010. Modeling the mass transfer of hydrophobic organic pollutants in briefly and continuously mixed sediment after amendment with activated carbon. Environmental Science & Technology 44:3381−3387

doi: 10.1021/es903582n
[36]

US Environmental Protection Agency. 2003. Equilibrium partitioning sediment guidelines (ESBs) for the protection of benthic organisms: PAH mixtures. Office of Science and Technology and Office of Research and Development, US Environmental Protection Agency, Washington, DC

[37]

Verbruggen EM. 2012. Environmental risk limits for polycyclic aromatic hydrocarbons (PAHs): for direct aquatic, benthic, and terrestrial toxicity. RIVM report 607711007/2012. National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands

[38]

Chiou CT, Peters LJ, Freed VH. 1979. A physical concept of soil-water equilibria for nonionic organic compounds. Science 206:831−832

doi: 10.1126/science.206.4420.831
[39]

Endo S, Xu W, Goss KU, Schmidt TC. 2008. Evaluating coal tar–water partitioning coefficient estimation methods and solute–solvent molecular interactions in tar phase. Chemosphere 73:532−538

doi: 10.1016/j.chemosphere.2008.06.008
[40]

Arp HPH, Breedveld GD, Cornelissen G. 2009. Estimating the in situ sediment-porewater distribution of PAHs and chlorinated aromatic hydrocarbons in anthropogenic impacted sediments. Environmental Science & Technology 43:5576−5585

doi: 10.1021/es9012905
[41]

Bestgen JO, Cetin B, Tanyu BF. 2016. Effects of extraction methods and factors on leaching of metals from recycled concrete aggregates. Environmental Science and Pollution Research 23:12983−13002

doi: 10.1007/s11356-016-6456-0
[42]

Caviglia C, Confalonieri G, Corazzari I, Destefanis E, Mandrone G, et al. 2019. Effects of particle size on properties and thermal inertization of bottom ashes (MSW of Turin's incinerator). Waste Management 84:340−354

doi: 10.1016/j.wasman.2018.11.050
[43]

European Parliament and Council of the European Union. 2020. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption. Official Journal of the European Union L 435/1:1–62

[44]

US Environmental Protection Agency. 2009. National Primary Drinking Water Regulations: Drinking Water Standards and Health Advisories (EPA 822-R-09-012). Office of Water, U.S. Environmental Protection Agency, Washington, DC

[45]

Birkholz DA, Belton KL, Guidotti TL. 2003. Toxicological evaluation for the hazard assessment of tire crumb for use in public playgrounds. Journal of the Air & Waste Management Association 53:903−907

doi: 10.1080/10473289.2003.10466221
[46]

Hartwell SI, Jordahl DM, Dawson CEO. 2000. The effect of salinity on tire leachate toxicity. Water, Air, and Soil Pollution 121:119−131

doi: 10.1023/A:1005282201554
[47]

Day KE, Holtze KE, Metcalfe-Smith JL, Bishop CT, Dutka BJ. 1993. Toxicity of leachate from automobile tires to aquatic biota. Chemosphere 27:665−675

doi: 10.1016/0045-6535(93)90100-J
[48]

Gualtieri M, Andrioletti M, Vismara C, Milani M, Camatini M. 2005. Toxicity of tire debris leachates. Environment International 31:723−730

doi: 10.1016/j.envint.2005.02.001
[49]

Abernethy S, Montemayor BP, Penders JW. 1996. The aquatic toxicity of scrap automobile tires. Standards Development Branch, Ontario Ministry of Environment and Energy, Toronto

[50]

Crouau Y, Gisclard C, Perotti P. 2002. The use of Folsomia candida (Collembola, Isotomidae) in bioassays of waste. Applied Soil Ecology 19:65−70

doi: 10.1016/S0929-1393(01)00175-5
[51]

Eom IC, Rast C, Veber AM, Vasseur P. 2007. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotoxicology and Environmental Safety 67:190−205

doi: 10.1016/j.ecoenv.2006.12.020
[52]

Domene X, Alcañiz JM, Andrés P. 2007. Ecotoxicological assessment of organic wastes using the soil collembolan Folsomia candida. Applied Soil Ecology 35:461−472

doi: 10.1016/j.apsoil.2006.10.004
[53]

Domene X, Enders A, Hanley K, Lehmann J. 2015. Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature. Science of The Total Environment 512–513:552−561

doi: 10.1016/j.scitotenv.2014.12.035
[54]

Amorim MJB, Römbke J, Scheffczyk A, Nogueira AJA, Soares AMVM. 2005. Effects of different soil types on the collembolans Folsomia candida and Hypogastrura assimilis using the herbicide phenmedipham. Archives of Environmental Contamination and Toxicology 49:343−352

doi: 10.1007/s00244-004-0220-z
[55]

Droge STJ, Paumen ML, Bleeker EAJ, Kraak MHS, van Gestel CAM. 2006. Chronic toxicity of polycyclic aromatic compounds to the springtail Folsomia candida and the enchytraeid Enchytraeus crypticus. Environmental Toxicology and Chemistry 25:2423−2431

doi: 10.1897/05-628R.1
[56]

Sverdrup LE, Kelley AE, Krogh PH, Nielsen T, Jensen J, et al. 2001. Effects of eight polycyclic aromatic compounds on the survival and reproduction of the springtail Folsomia fimetaria L. (Collembola, Isotomidae). Environmental Toxicology and Chemistry 20:1332−1338

doi: 10.1002/etc.5620200623
[57]

Hauser B, Schrader G, Bahadir M. 1997. Comparison of acute toxicity and genotoxic concentrations of single compounds and waste elutriates using the Microtox/Mutatox test system. Ecotoxicology and Environmental Safety 38:227−231

doi: 10.1006/eesa.1997.1594
[58]

Wik A, Dave G. 2009. Occurrence and effects of tire wear particles in the environment – a critical review and an initial risk assessment. Environmental Pollution 157:1−11

doi: 10.1016/j.envpol.2008.09.028
[59]

Wik A. 2007. Toxic components leaching from tire rubber. Bulletin of Environmental Contamination and Toxicology 79:114−119

doi: 10.1007/s00128-007-9145-3