[1]

Muehe EM, Wang T, Kerl CF, Planer-Friedrich B, Fendorf S. 2019. Rice production threatened by coupled stresses of climate and soil arsenic. Nature Communications 10:4985

doi: 10.1038/s41467-019-12946-4
[2]

Yuan H, Wan Q, Huang Y, Chen Z, He X, et al. 2021. Warming facilitates microbial reduction and release of arsenic in flooded paddy soil and arsenic accumulation in rice grains. Journal of Hazardous Materials 408:124913

doi: 10.1016/j.jhazmat.2020.124913
[3]

Arao T, Makino T, Kawasaki A, Akahane I, Kiho N. 2018. Effect of air temperature after heading of rice on the arsenic concentration of grain. Soil Science and Plant Nutrition 64:433−437

doi: 10.1080/00380768.2018.1438811
[4]

Hemmat-Jou MH, Gao R, Chen G, Liang Y, Li F, et al. 2024. Synergistic effects of warming and humic substances on driving arsenic reduction and methanogenesis in flooded paddy soil. Journal of Hazardous Materials 476:134947

doi: 10.1016/j.jhazmat.2024.134947
[5]

Ge L, Cang L, Ata-Ul-Karim ST, Yang J, Zhou D. 2019. Effects of various warming patterns on Cd transfer in soil-rice systems under Free Air Temperature Increase (FATI) conditions. Ecotoxicology and Environmental Safety 168:80−87

doi: 10.1016/j.ecoenv.2018.10.047
[6]

Neumann RB, Seyfferth AL, Teshera-Levye J, Ellingson J. 2017. Soil warming increases arsenic availability in the rice rhizosphere. Agricultural & Environmental Letters 2:170006

doi: 10.2134/ael2017.02.0006
[7]

Farhat YA, Kim SH, Seyfferth AL, Zhang L, Neumann RB. 2021. Altered arsenic availability, uptake, and allocation in rice under elevated temperature. Science of The Total Environment 763:143049

doi: 10.1016/j.scitotenv.2020.143049
[8]

Zhao FJ, Tang Z, Song JJ, Huang XY, Wang P. 2022. Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Molecular Plant 15:27−44

doi: 10.1016/j.molp.2021.09.016
[9]

Tang Z, and Zhao FJ. 2021. The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants. Critical Reviews in Environmental Science and Technology 51:2449−2484

doi: 10.1080/10643389.2020.1795053
[10]

Kama R, He J, Nabi F, Aidara M, Faye B, et al. 2025. Crop rotation and green manure type enhance organic carbon fractions and reduce soil arsenic content. Agriculture, Ecosystems & Environment 378:109287

doi: 10.1016/j.agee.2024.109287
[11]

Fan X, Zhang Y, Shi K, Peng J, Liu Y, et al. 2024. Surging compound drought–heatwaves underrated in global soils. Proceedings of the National Academy of Sciences of the United States of America 121:e2410294121

doi: 10.1073/pnas.2410294121
[12]

Lembrechts JJ, van den Hoogen J, Aalto J, Ashcroft MB, De Frenne P, et al. 2022. Global maps of soil temperature. Global Change Biology 28:3110−144

doi: 10.1111/gcb.16060
[13]

Su Q, Rohila JS, Ranganathan S, Karthikeyan R. 2023. Rice yield and quality in response to daytime and nighttime temperature increase–a meta-analysis perspective. Science of The Total Environment 898:165256

doi: 10.1016/j.scitotenv.2023.165256
[14]

Kujala K, Laamanen T, Khan UA, Besold J, Planer-Friedrich B. 2022. Kinetics of arsenic and antimony reduction and oxidation in peatlands treating mining-affected waters: effects of microbes, temperature, and carbon substrate. Soil Biology and Biochemistry 167:108598

doi: 10.1016/j.soilbio.2022.108598
[15]

Ma F, Yuan X. 2023. When will the unprecedented 2022 summer heat waves in Yangtze River basin become normal in a warming climate? Geophysical Research Letters 50:e2022GL101946

doi: 10.1029/2022GL101946
[16]

Li C, Min R, Gu X, Gulakhmadov A, Luo S, et al. 2022. Substantial increase in heavy precipitation events preceded by moist heatwaves over China during 1961–2019. Frontiers in Environmental Science 10:951392

doi: 10.3389/fenvs.2022.951392
[17]

Huang L, Bell RW, Dell B, Woodward J. 2004. Rapid nitric acid digestion of plant material with an open-vessel microwave system. Communications in Soil Science and Plant Analysis 35:427−440

doi: 10.1081/CSS-120029723
[18]

Chari NR, Lin Y, Lin YS, Silver WL. 2021. Interactive effects of temperature and redox on soil carbon and iron cycling. Soil Biology and Biochemistry 157:108235

doi: 10.1016/j.soilbio.2021.108235
[19]

Zhang S, Huangfu Q, Boyle J, Wu L, Song J, et al. 2025. Hotspots and dynamics of dissolved thallium species at oxic-anoxic interfaces in flooded soils. Chemosphere 377:144331

doi: 10.1016/j.chemosphere.2025.144331
[20]

Zhang S, Huangfu Q, Zhu D, Chen Z. 2025. Floating iron biofilms as hidden barriers to methane emissions in wetlands. The Innovation Geoscience 3:100161

doi: 10.59717/j.xinn-geo.2025.100161
[21]

Wang L, Zhang T, Cai T, Xiang Q, Liu X, et al. 2024. The pH-specific response of soil resistome to triclocarban and arsenic co-contamination. Journal of Hazardous Materials 464:132952

doi: 10.1016/j.jhazmat.2023.132952
[22]

Ni B, Zhang TL, Cai TG, Xiang Q, Zhu D. 2024. Effects of heavy metal and disinfectant on antibiotic resistance genes and virulence factor genes in the plastisphere from diverse soil ecosystems. Journal of Hazardous Materials 465:133335

doi: 10.1016/j.jhazmat.2023.133335
[23]

Muff S, Nilsen EB, O'Hara RB, Nater CR. 2022. Rewriting results sections in the language of evidence. Trends in Ecology & Evolution 37:203−210

doi: 10.1016/j.tree.2021.10.009
[24]

Wu W, Ma Q, Zhao Y, Zhang Q, Tang Y, et al. 2024. Variation in Cd and As accumulation and health risk in rice-ratoon cropping system: evidence from two-year field trials involving multiple cultivars in southern China. Journal of Cereal Science 120:104046

doi: 10.1016/j.jcs.2024.104046
[25]

Yang D, Han D, Huang J, Peng S. 2024. Reducing cadmium accumulation and increasing grain yield with proper timing of flood irrigation in the second season of ratoon rice. Field Crops Research 306:109222

doi: 10.1016/j.fcr.2023.109222
[26]

Yang D, Peng S, Qi M, Xiong Z, Deng S, et al. 2023. Comparison of grain cadmium and arsenic concentration between main and ratoon crop in rice ratooning system. Food Chemistry 399:134017

doi: 10.1016/j.foodchem.2022.134017
[27]

He S, Wang X, Wu X, Yin Y, Ma LQ. 2020. Using rice as a remediating plant to deplete bioavailable arsenic from paddy soils. Environment International 141:105799

doi: 10.1016/j.envint.2020.105799
[28]

Yang D, Tang Q, Huang J, Peng S. 2025. Water management for arsenic mitigation in the second crop of ratoon rice. Field Crops Research 333:110119

doi: 10.1016/j.fcr.2025.110119
[29]

Yang D, Du T, Yang C, Yang G, Wang F, et al. 2023. Profound impact of water management on cadmium and arsenic accumulation in ratoon rice. Field Crops Research 302:109071

doi: 10.1016/j.fcr.2023.109071
[30]

Huang H, Zhao D, Wang P. 2021. Biogeochemical control on the mobilization of Cd in soil. Current Pollution Reports 7:194−200

doi: 10.1007/s40726-021-00180-w
[31]

Zhao FJ, Wang P. 2020. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant and Soil 446:1−21

doi: 10.1007/s11104-019-04374-6
[32]

Zhang XW, Huang H, Zhu YP, Chen MM, Lu HY, et al. 2025. Near-surface hydroxyl radical hotspots mobilize cadmium and immobilize arsenic during paddy soil drainage. Environmental Science & Technology 59:24035−24043

doi: 10.1021/acs.est.5c13273
[33]

Wang Y, Huang S, Huo W, Li X, Shi X, et al. 2025. Comparative analysis of zinc, copper, cadmium, and arsenic accumulation in forage-grain rice: implications for food safety and health risks. Food Chemistry 468:142436

doi: 10.1016/j.foodchem.2024.142436
[34]

Yamaguchi N, Ishikawa S, Abe T, Baba K, Arao T, et al. 2012. Role of the node in controlling traffic of cadmium, zinc, and manganese in rice. Journal of Experimental Botany 63:2729−2737

doi: 10.1093/jxb/err455
[35]

Xie W, Yu J, Luo D, Wei R, Liu T, et al. 2025. Transport properties and accumulation patterns of trivalent chromium in rice: a hydroponic and modeling approach. Plant Physiology and Biochemistry 223:109825

doi: 10.1016/j.plaphy.2025.109825
[36]

Xu ZR, Liu WY, Ye K, Mao M, Gao AX, et al. 2025. Dimethylmonothioarsenate is a key arsenic species driving rice straighthead disease. Environmental Science & Technology 59:13352−13361

doi: 10.1021/acs.est.4c1194510
[37]

Wang D, Kim BF, Nachman KE, Chiger AA, Herbstman J, et al. 2025. Impact of climate change on arsenic concentrations in paddy rice and the associated dietary health risks in Asia: an experimental and modelling study. The Lancet Planetary Health 9:e397−e409

doi: 10.1016/S2542-5196(25)00055-5
[38]

Zhu D, Liu SY, Sun MM, Yi XY, Duan GL, et al. 2024. Adaptive expression of phage auxiliary metabolic genes in paddy soils and their contribution toward global carbon sequestration. Proceedings of the National Academy of Sciences of the United States of America 121:e2419798121

doi: 10.1073/pnas.2419798121
[39]

Ding J, Zhu D, Wang Y, Wang H, Liang A, et al. 2021. Exposure to heavy metal and antibiotic enriches antibiotic resistant genes on the tire particles in soil. Science of The Total Environment 792:148417

doi: 10.1016/j.scitotenv.2021.148417
[40]

Farhat YA, Kim SH, Neumann RB. 2023. When does temperature matter? Response of rice arsenic to heat exposure during different developmental stages. Plant and Soil 491:369−386

doi: 10.1007/s11104-023-06122-3
[41]

García-García A, Cuesta-Valero FJ, Miralles DG, Mahecha MD, Quaas J, et al. 2023. Soil heat extremes can outpace air temperature extremes. Nature Climate Change 13:1237−1241

doi: 10.1038/s41558-023-01812-3
[42]

Zhu D, Ding J, Wang YF, Zhu YG. 2022. Effects of trophic level and land use on the variation of animal antibiotic resistome in the soil food web. Environmental Science & Technology 56:14937−14947

doi: 10.1021/acs.est.2c00710
[43]

Zhu D, Ke X, Wu L, Christie P, Luo Y. 2016. Biological transfer of dietary cadmium in relation to nitrogen transfer and 15N fractionation in a soil collembolan-predatory mite food chain. Soil Biology and Biochemistry 101:207−216

doi: 10.1016/j.soilbio.2016.07.026