[1]

Wang W, Chang JS, Show KY, Lee DJ. 2022. Anaerobic recalcitrance in wastewater treatment: a review. Bioresource Technology 363:127920

doi: 10.1016/j.biortech.2022.127920
[2]

Geris R, Malta M, Soares LA, de Souza Neta LC, Pereira NS, et al. 2024. A review about the mycoremediation of soil impacted by war-like activities: challenges and gaps. Journal of Fungi 10(2):94

doi: 10.3390/jof10020094
[3]

Balaes T, Mangalagiu II, Tanase C. 2013. Lignicolous macromycetes: potential candidates for bioremediation of synthetic dyes. Revista de Chimie 64:930−35

[4]

Rhodes CJ. 2014. Mycoremediation (bioremediation with fungi) – growing mushrooms to clean the earth. Chemical Speciation & Bioavailability 26(3):196−98

doi: 10.3184/095422914X14047407349335
[5]

Bhadouria R, Das S, Kumar A, Singh R, Singh VK. 2020. Mycoremediation of agrochemicals. In: Agrochemicals Detection, Treatment and Remediation, ed. Prasad MNV. Amsterdam: Elsevier. pp. 593–20 doi: 10.1016/b978-0-08-103017-2.00022-2

[6]

Akpasi SO, Anekwe IMS, Tetteh EK, Amune UO, Shoyiga HO, et al. 2023. Mycoremediation as a potentially promising technology: current status and prospects – a review. Applied Sciences 13(8):4978

doi: 10.3390/app13084978
[7]

Zhuo R, Fan F. 2021. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. Science of The Total Environment 778:146132

doi: 10.1016/j.scitotenv.2021.146132
[8]

Tembeni B, Idowu OE, Benrkia R, Boutahiri S, Olatunji OJ. 2024. Biotransformation of selected secondary metabolites by Alternaria species and the pharmaceutical, food and agricultural application of biotransformation products. Natural Products and Bioprospecting 14:46

doi: 10.1007/s13659-024-00469-5
[9]

Lin S, Wei J, Yang B, Zhang M, Zhuo R. 2022. Bioremediation of organic pollutants by white rot fungal cytochrome P450: the role and mechanism of CYP450 in biodegradation. Chemosphere 301:134776

doi: 10.1016/j.chemosphere.2022.134776
[10]

Ghosh S, Rusyn I, Dmytruk OV, Dmytruk KV, Onyeaka H, et al. 2023. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons. Frontiers in Bioengineering and Biotechnology 11:1106973

doi: 10.3389/fbioe.2023.1106973
[11]

Forgacs E, Cserháti T, Oros G. 2004. Removal of synthetic dyes from wastewaters: a review. Environment International 30(7):953−71

doi: 10.1016/j.envint.2004.02.001
[12]

Pointing S. 2001. Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology 57:20−33

doi: 10.1007/s002530100745
[13]

Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, et al. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology 8:195−204

[14]

Vara S. 2017. Mycoremediation of lignocelluloses. In: Handbook of Research on Inventive Bioremediation Techniques, ed. Bhakta JN. Hershey, PA: IGI Global. pp. 264–86 doi: 10.4018/978-1-5225-2325-3.CH011

[15]

Dicko M, Ferrari R, Tangthirasunun N, Gautier V, Lalanne C, et al. 2020. Lignin degradation and its use in signaling development by the coprophilous ascomycete Podospora anserina. Journal of Fungi 6(4):278

doi: 10.3390/jof6040278
[16]

Bell A. 1983. Dung Fungi: An Illustrated Guide to Coprophilous Fungi in New Zealand. Wellington, New Zealand: Victoria University Press.

[17]

Lee CM, van Geel B, Gosling WD. 2022. On the use of spores of coprophilous fungi preserved in sediments to indicate past herbivore presence. Quaternary 5(3):30

doi: 10.3390/quat5030030
[18]

van Asperen EN, Perrotti A, Baker A. 2021. Coprophilous fungal spores: non-pollen palynomorphs for the study of past megaherbivores. Geological Society, London, Special Publications 511:245−67

doi: 10.1144/SP511-2020-41
[19]

Harper JE, Webster J. 1964. An experimental analysis of the coprophilous fungus succession. Transactions of the British Mycological Society 47(4):511−30

doi: 10.1016/S0007-1536(64)80029-2
[20]

Elshafie AE. 2005. Coprophilous mycobiota of Oman. Mycotaxon 93:355−62

[21]

Khairalla A. 2007. A study on the ecological group coprophilous (dung) fungi in Khartoum. Thesis. University of Khartoum, Sudan.

[22]

Calaça F, Santos S. 2017. Fungos Coprófilos A Biodiversidade Oculta Nos Excrementos [Coprophilous Fungi: The Hidden Biodiversity in Excrement]. Anápolis: Editora Universidade Estadual de Goiás (UEG).

[23]

Dix NJ, Webster J. 1995. Coprophilous fungi. In: Fungal Ecology. Dordrecht: Springer. pp. 203–24 doi: 10.1007/978-94-011-0693-1_8

[24]

Sun X, Sitters J, Ruytinx J, Wassen MJ, Venterink HO. 2024. Microbial community composition in the dung of five sympatric European herbivore species. Ecology and Evolution 14:e11071

doi: 10.1002/ece3.11071
[25]

Abdullah S, Nashat L. 2014. Diversity of soil microfungi in pine forest at Duhok governorate, Kurdistan region, Iraq. Science Journal of University of Zakho 2:97−106

doi: 10.25271/2014.2.1.139
[26]

Mutashar YA. 2023. Morphological and molecular study of fungi isolated from some animal dung in Maysan Province. Thesis. University of Misan, Iraq.

[27]

Halbwachs H, Bässler C. 2020. No bull: dung-dwelling mushrooms show reproductive trait syndromes different from their non-coprophilous allies. Mycological Progress 19:817−24

doi: 10.1007/s11557-020-01604-5
[28]

Larsen K. 1971. Danish endocoprophilous fungi, and their sequence of occurrence. Botanisk Tidsskrift 66(1−2):1−32

[29]

Sánchez Márquez S, Bills GF, Domínguez Acuña L, Zabalgogeazcoa I. 2010. Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Diversity 41:115–23

doi: 10.1007/s13225-009-0015-7
[30]

Herrera J, Poudel R, Khidir HH. 2011. Molecular characterization of coprophilous fungal communities reveals sequences related to root-associated fungal endophytes. Microbial Ecology 61(2):239–44

doi: 10.1007/s00248-010-9744-0
[31]

Miranda V, Sede S, Aranda-Rickert A, Rothen C, Scervino JM, et al. 2020. Taxonomy, life cycle and endophytism of coprophilous fungi from an underground desert rodent. Fungal Ecology 43:100872

doi: 10.1016/j.funeco.2019.100872
[32]

Makhuvele R, Ncube I, Jansen van Rensburg EL, La Grange DC. 2017. Isolation of fungi from dung of wild herbivores for application in bioethanol production. Brazilian Journal of Microbiology 48(4):648−55

doi: 10.1016/j.bjm.2016.11.013
[33]

Richardson MJ. 2001. Coprophilous fungi from Brazil. Brazilian Archives of Biology and Technology 44(3):283−89

doi: 10.1590/S1516-89132001000300010
[34]

Kuyper T, van Peer A, Baars, J. 2021. Coprophilous fungi: closing the loop: improving circularity with manure-loving mushrooms. Wageningen: Wageningen Plant Research. doi: 10.18174/539315

[35]

Arran V. 2023. The importance of animal manure in agriculture: benefits and its key factors. International Journal of Manures and Fertilizers 11(1):1

[36]

Hudson HJ. 1968. The ecology of fungi on plant remains above the soil. New Phytologist 67(4):837−74

doi: 10.1111/j.1469-8137.1968.tb06399.x
[37]

Bills GF, Gloer JB, An Z. 2013. Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Current Opinion in Microbiology 16(5):549−65

doi: 10.1016/j.mib.2013.08.001
[38]

Jasim AS, Abass BA, Al-Rubayae IM. 2021. Effect of the crude extract of coprophilous fungi on some bacterial species isolated from cases of mastitis. Archives of Razi Institute 76(5):1333−41

doi: 10.22092/ari.2021.356366.1832
[39]

Sarrocco S. 2016. Dung-inhabiting fungi: a potential reservoir of novel secondary metabolites for the control of plant pathogens. Pest Management Science 72(4):643−52

doi: 10.1002/ps.4206
[40]

Tangthirasunun N, Bhat DJ, Poeaim S. 2024. Antibacterial and lignocellulose-degrading enzyme activities of coprophilous fungi obtained from cow dung in Thailand. Asian Journal of Agriculture and Biology 2024:(4)1−17

doi: 10.35495/ajab.2023.323
[41]

Khiralla A, Rosella S, Yagi S, Mohamed I, Laurain-Mattar D. 2016. Endophytic Fungi: occurrence, classification, function and natural products. In Endophytic Fungi: Diversity, Characterization and Biocontrol, ed. Hughes E. Hawthorne, New York: Nova Science Publishers. pp. 22–35 www.researchgate.net/publication/312198386

[42]

van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, et al. 2003. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. Journal of Archaeological Science 30:873−83

doi: 10.1016/S0305-4403(02)00265-0
[43]

Peterson R, Grinyer J, Nevalainen H. 2011. Secretome of the coprophilous fungus Doratomyces stemonitis C8, isolated from koala feces. Applied and Environmental Microbiology 77:3793−801

doi: 10.1128/AEM.00252-11
[44]

Cui Z, Zhang X, Yang H, Sun L. 2017. Bioremediation of heavy metal pollution utilizing composite microbial agent of Mucor circinelloides, Actinomucor sp. and Mortierella sp. Journal of Environmental Chemical Engineering 5:3616−21

doi: 10.1016/j.jece.2017.07.021
[45]

Hyde KD, Noorabadi MT, Thiyagaraja V, He MQ, Johnston PR, et al. 2024. The 2024 outline of fungi and fungus-like taxa. Mycosphere 15(1):5146−6239

doi: 10.5943/mycosphere/15/1/25
[46]

Abramczyk BM, Wiktorowicz DG, Okrasińska A, Pawłowska JZ. 2024. Mucor thermorhizoides − a new species from post-mining site in Sudety mountains (Poland). Current Microbiology 81:201

doi: 10.1007/s00284-024-03708-7
[47]

Zhang X, Yang H, Cui Z. 2017. Mucor circinelloides: efficiency of bioremediation response to heavy metal pollution. Toxicology Research 6(4):442−47

doi: 10.1039/C7TX00110J
[48]

Hansel CM, Zeiner CA, Santelli CM, Webb SM. 2012. Mn (II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proceedings of the National Academy of Sciences of the United States of America 109:12621−25

doi: 10.1073/pnas.1203885109
[49]

Falandysz J. 2016. Mercury bio-extraction by fungus Coprinus comatus: a possible bioindicator and mycoremediator of polluted soils? Environmental Science and Pollution Research 23:7444−51

doi: 10.1007/s11356-015-5971-8
[50]

Wang Y, Zhang B, Chen N, Wang C, Feng S, et al. 2018. Combined bioremediation of soil co-contaminated with cadmium and endosulfan by Pleurotus eryngii and Coprinus comatus. Journal of Soils and Sediments 18:2136−47

doi: 10.1007/s11368-017-1762-9
[51]

Wu B, Chen R, Yao Y, Gao N, Zuo L, et al. 2015. Mycoremediation potential of Coprinus comatus in soil co-contaminated with copper and naphthalene. RSC Advances 5(4):67524−31

doi: 10.1039/C5RA12763G
[52]

Tang X, Liu B, Deng Q, Zhang R, Li X, et al. 2018. Strengthening detoxication impacts of Coprinus comatus on nickel and fluoranthene co-contaminated soil by bacterial inoculation. Journal of Environmental Management 206:633−41

doi: 10.1016/j.jenvman.2017.11.009
[53]

Şenol ZM, Keskin ZS, Dinçer E, Ben Ayed A . 2025. Influential lead uptake using dried and inactivated-fungal biomass obtained from Panaeolus papilionaceus: biological activity, equilibrium, and mechanism. Biomass Conversion and Biorefinery 15:7283−94

doi: 10.1007/s13399-024-05584-4
[54]

Geml J, Davis DD, Geiser DM. 2005. Phylogenetic analyses reveal deeply divergent species lineages in the genus Sphaerobolus (Phallales: Basidiomycota). Molecular Phylogenetics and Evolution 35(2):313−22

doi: 10.1016/j.ympev.2005.01.014
[55]

Baetsen‐Young AM, Kaminski JE, Tien M. 2017. Lignocellulose degrading capabilities of Sphaerobolus stellatus in creeping bentgrass. International Turfgrass Society Research Journal 13(1):145−52

doi: 10.2134/itsrj2016.05.0400
[56]

Winquist E, Valentin L, Moilanen U, Leisola M, Hatakka A, et al. 2009. Development of a fungal pre-treatment process for reduction of organic matter in contaminated soil. Journal of Chemical Technology & Biotechnology 84(6):845−50

doi: 10.1002/jctb.2167
[57]

Cerdá-Olmedo E. 2001. Phycomyces and the biology of light and color. FEMS Microbiology Reviews 25(5):503−12

doi: 10.1111/j.1574-6976.2001.tb00588.x
[58]

Fan CY, Krishnamurthy S. 1995. Enzymes for enhancing bioremediation of petroleum-contaminated soils: a brief review. Journal of the Air and Waste Management Association 45(6):453−60

doi: 10.1080/10473289.1995.10467375
[59]

Sista Kameshwar AK, Qin W. 2019. Systematic review of publicly available non-Dikarya fungal proteomes for understanding their plant biomass-degrading and bioremediation potentials. Bioresources and Bioprocessing 6:30

doi: 10.1186/s40643-019-0264-6
[60]

Diorio LA, Forchiassin F, Papinutti VL, Sueldo DV. 2003. Enzymatic activity and degradation of different kinds of organic wastes by Saccobolus saccoboloides (Fungi, Ascomycotina). Revista Iberoamericana de Micología 20(1):11−15

[61]

Luo H, Li X, Li G, Pan Y, Zhang K. 2006. Acanthocytes of Stropharia rugosoannulata function as a nematode-attacking device. Applied and Environmental Microbiology 72(4):2982−87

doi: 10.1128/AEM.72.4.2982-2987.2006
[62]

Damm U, Fourie PH, Crous PW. 2010. Coniochaeta (Lecythophora), Collophora gen. nov. and Phaeomoniella species associated with wood necroses of Prunus trees. Persoonia − Molecular Phylogeny and Evolution of Fungi 24:60−80

doi: 10.3767/003158510X500705
[63]

Daâssi D, Almaghrabi FQ. 2023. Petroleum-degrading fungal isolates for the treatment of soil microcosms. Microorganisms 11(5):1351

doi: 10.3390/microorganisms11051351
[64]

Ament-Velásquez SL, Vogan AA. 2022. Podospora anserina. Trends in Microbiology 30(12):1243−44

doi: 10.1016/j.tim.2022.09.006
[65]

Deshmukh R, Khardenavis AA, Purohit HJ. 2016. Diverse metabolic capacities of fungi for bioremediation. Indian Journal of Microbiology 56(3):247−64

doi: 10.1007/s12088-016-0584-6
[66]

Corredor D, Duchicela J, Flores FJ, Maya M, Guerron E. 2024. Review of explosive contamination and bioremediation: insights from microbial and bio-omic approaches. Toxics 12(4):249

doi: 10.3390/toxics12040249
[67]

Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman, G. 2000. Microbial degradation of explosives: biotransformation versus mineralization. Applied Microbiology and Biotechnology 54:605−18

doi: 10.1007/s002530000445
[68]

Kutateladze L, Zakariashvili N, Khokhashvili I, Jobava M, Alexidze T, et al. 2018. Fungal elimination of 2, 4, 6-trinitrotoluene (TNT) from the soils. The EuroBiotech Journal 2(1):39−46

doi: 10.2478/ebtj-2018-0007
[69]

Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W. 1997. Screening for fungi intensively mineralizing 2, 4, 6-trinitrotoluene. Applied Microbiology and Biotechnology 47(4):452−57

doi: 10.1007/s002530050955
[70]

Law KL, Narayan R. 2022. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nature Reviews Materials 7:104−16

doi: 10.1038/s41578-021-00382-0
[71]

Darwish AMG, Abdel-Azeem AM. 2019. Chaetomium enzymes and their applications. In: Recent Developments on Genus Chaetomium, ed. Abdel-Azeem AM. Cham: Springer. pp. 241–49 doi: 10.1007/978-3-030-31612-9_9

[72]

Domsch KH, Gams W, Anderson TH. 2008. Compendium of soil Fungi. European Journal of Soil Science 59(5):1007

doi: 10.1111/j.1365-2389.2008.01052_1.x
[73]

Vivi VK, Martins-Franchetti SM, Attili-Angelis D. 2019. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiologica 64(1):1−7

doi: 10.1007/s12223-018-0621-4
[74]

Sin LT, Tueen BS. 2023. Plastics and Sustainability: Practical Approaches. Amsterdam: Elsevier. doi: 10.1016/C2020-0-02015-3

[75]

Porter R, Černoša A, Fernández-Sanmartín P, Cortizas AM, Aranda E, et al. 2023. Degradation of polypropylene by fungi Coniochaeta hoffmannii and Pleurostoma richardsiae. Microbiological Research 277:127507

doi: 10.1016/j.micres.2023.127507
[76]

Pardo-Rodríguez ML, Zorro-Mateus PJP. 2021. Biodegradation of polyvinyl chloride by Mucor s.p. and Penicillium s.p. isolated from soil. Revista de Investigación, Desarrollo e Innovación 11(2):387−400

doi: 10.19053/20278306.v11.n2.2021.12763
[77]

Vats A, Mishra S. 2018. Identification and evaluation of bioremediation potential of laccase isoforms produced by Cyathus bulleri on wheat bran. Journal of Hazardous Materials 344:466−79

doi: 10.1016/j.jhazmat.2017.10.043
[78]

Abbott TP, Wicklow DT. 1984. Degradation of lignin by Cyathus species. Applied and Environmental Microbiology 47:585−87

doi: 10.1128/aem.47.3.585-587.1984
[79]

Salony, Mishra S, Bisaria VS. 2006. Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Applied Microbiology and Biotechnology 71:646−53

doi: 10.1007/s00253-005-0206-4
[80]

von Arx JA. 1986. The ascomycet genus Gymnoascus. Persoonia: Molecular Phylogeny and Evolution of Fungi 13(2):173−83

[81]

Błyskal B. 2014. Gymnoascus arxii's potential in deteriorating woollen textiles dyed with natural and synthetic dyes. International Biodeterioration & Biodegradation 86:349−57

doi: 10.1016/j.ibiod.2013.10.010
[82]

Akdogan HA, Topuz MC, Urhan AA. 2014. Studies on decolorization of reactive blue 19 textile dye by Coprinus plicatilis. Journal of Environmental Health Science & Engineering 12:49

doi: 10.1186/2052-336X-12-49
[83]

Su Y, Xiang Y, Wang S. 2023. Lignin degradation by Coprinus comatus in corn stalk. Industrial Crops and Products 200:116906

doi: 10.1016/j.indcrop.2023.116906
[84]

Mtibaà R, de Eugenio L, Ghariani B, Louati I, Belbahri L, et al. 2017. A halotolerant laccase from Chaetomium strain isolated from desert soil and its ability for dye decolourization. 3 Biotech 7:329

doi: 10.1007/s13205-017-0973-5
[85]

Krug JC, Benny GL, Keller HW. 2004. Coprophilous fungi. In: Biodiversity of Fungi: Inventory and Monitoring Methods, eds. Mueller GM, Foster MS, Bills GF. USA: Acdemic Press. pp. 467–99 doi: 10.1016/B978-012509551-8/50024-6

[86]

Rizo J, Díaz D, Reyes-Trejo B, Arellano-Jiménez MJ. 2020. Cu2O nanoparticles for the degradation of methyl parathion. Beilstein Journal of Nanotechnology 11:1546−55

doi: 10.3762/bjnano.11.137
[87]

Romero LAV, Tejocote-Pérez M, Alcántara-Valladolid AE, Balderas-Hernández P, Roa-Morales G, et al. 2023. Biological translocation of parathion methyl by Pilobolus sp. in corn microsystems. Environment Protection Engineering 49(3):5−14

doi: 10.37190/epe230301
[88]

Harms H, Schlosser D, Wick LY. 2011. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology 9:177−92

doi: 10.1038/nrmicro2519
[89]

Bordjiba O, Steiman R, Kadri M, Semadi A, Guiraud P. 2001. Removal of herbicides from liquid media by fungi isolated from a contaminated soil. Journal of Environmental Quality 30(2):418−26

doi: 10.2134/jeq2001.302418x
[90]

Anasonye F, Winquist E, Kluczek-Turpeinen B, Räsänen M, Salonen K, et al. 2014. Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil. Chemosphere 110:85−90

doi: 10.1016/j.chemosphere.2014.03.079
[91]

Castellet-Rovira F, Lucas D, Villagrasa M, Rodríguez-Mozaz S, Barceló D, et al. 2018. Stropharia rugosoannulata and Gymnopilus luteofolius: promising fungal species for pharmaceutical biodegradation in contaminated water. Journal of Environmental Management 207:396−404

doi: 10.1016/j.jenvman.2017.07.052
[92]

Pozdnyakova N, Schlosser D, Dubrovskaya E, Balandina S, Sigida E, et al. 2018. The degradative activity and adaptation potential of the litter-decomposing fungus Stropharia rugosoannulata. World Journal of Microbiology and Biotechnology 34:133

doi: 10.1007/s11274-018-2516-6
[93]

Jing XB, He N, Zhang Y, Cao YR, Xu H. 2012. Isolation and characterization of heavy-metal-mobilizing bacteria from contaminated soils and their potential in promoting Pb, Cu, and Cd accumulation by Coprinus comatus. Canadian Journal of Microbiology 58(1):45−53

doi: 10.1139/w11-110
[94]

Perinpaul JP. 2024. Cow vector. www.vecteezy.com

[95]

Heim R. 2024. Mucor. https://stock.adobe.com/eg/search?k=mucor

[96]

Stevens F. 2018. Pilobolus roridus. www.mykoweb.com/CAF/species/Pilobolus_roridus.html

[97]

Valdés C. 2020. Piptocephalis. www.inaturalist.org/taxa/375053-Piptocephalis

[98]

Gora F. 2022. Chaetomium globosum. www.manmadediy.com/finding-and-removing-chaetomium-mold

[99]

Wood M. 2023. Sphaerobolus stellatus. www.mykoweb.com/CAF/species/Sphaerobolus_stellatus.html

[100]

Emberger G. 2008. Cyathus stercoreus. www.messiah.edu/Oakes/fungi_on_wood/bird%27s nest fungi/species pages/Cyathus stercoreus.htm