| [1] |
Wang W, Chang JS, Show KY, Lee DJ. 2022. Anaerobic recalcitrance in wastewater treatment: a review. |
| [2] |
Geris R, Malta M, Soares LA, de Souza Neta LC, Pereira NS, et al. 2024. A review about the mycoremediation of soil impacted by war-like activities: challenges and gaps. |
| [3] |
Balaes T, Mangalagiu II, Tanase C. 2013. Lignicolous macromycetes: potential candidates for bioremediation of synthetic dyes. Revista de Chimie 64:930−35 |
| [4] |
Rhodes CJ. 2014. Mycoremediation (bioremediation with fungi) – growing mushrooms to clean the earth. |
| [5] |
Bhadouria R, Das S, Kumar A, Singh R, Singh VK. 2020. Mycoremediation of agrochemicals. In: Agrochemicals Detection, Treatment and Remediation, ed. Prasad MNV. Amsterdam: Elsevier. pp. 593–20 doi: 10.1016/b978-0-08-103017-2.00022-2 |
| [6] |
Akpasi SO, Anekwe IMS, Tetteh EK, Amune UO, Shoyiga HO, et al. 2023. Mycoremediation as a potentially promising technology: current status and prospects – a review. |
| [7] |
Zhuo R, Fan F. 2021. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. |
| [8] |
Tembeni B, Idowu OE, Benrkia R, Boutahiri S, Olatunji OJ. 2024. Biotransformation of selected secondary metabolites by Alternaria species and the pharmaceutical, food and agricultural application of biotransformation products. |
| [9] |
Lin S, Wei J, Yang B, Zhang M, Zhuo R. 2022. Bioremediation of organic pollutants by white rot fungal cytochrome P450: the role and mechanism of CYP450 in biodegradation. |
| [10] |
Ghosh S, Rusyn I, Dmytruk OV, Dmytruk KV, Onyeaka H, et al. 2023. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons. |
| [11] |
Forgacs E, Cserháti T, Oros G. 2004. Removal of synthetic dyes from wastewaters: a review. |
| [12] |
Pointing S. 2001. Feasibility of bioremediation by white-rot fungi. |
| [13] |
Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, et al. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology 8:195−204 |
| [14] |
Vara S. 2017. Mycoremediation of lignocelluloses. In: Handbook of Research on Inventive Bioremediation Techniques, ed. Bhakta JN. Hershey, PA: IGI Global. pp. 264–86 doi: 10.4018/978-1-5225-2325-3.CH011 |
| [15] |
Dicko M, Ferrari R, Tangthirasunun N, Gautier V, Lalanne C, et al. 2020. Lignin degradation and its use in signaling development by the coprophilous ascomycete Podospora anserina. |
| [16] |
Bell A. 1983. Dung Fungi: An Illustrated Guide to Coprophilous Fungi in New Zealand. Wellington, New Zealand: Victoria University Press. |
| [17] |
Lee CM, van Geel B, Gosling WD. 2022. On the use of spores of coprophilous fungi preserved in sediments to indicate past herbivore presence. |
| [18] |
van Asperen EN, Perrotti A, Baker A. 2021. Coprophilous fungal spores: non-pollen palynomorphs for the study of past megaherbivores. |
| [19] |
Harper JE, Webster J. 1964. An experimental analysis of the coprophilous fungus succession. |
| [20] |
Elshafie AE. 2005. Coprophilous mycobiota of Oman. Mycotaxon 93:355−62 |
| [21] |
Khairalla A. 2007. A study on the ecological group coprophilous (dung) fungi in Khartoum. Thesis. University of Khartoum, Sudan. |
| [22] |
Calaça F, Santos S. 2017. Fungos Coprófilos A Biodiversidade Oculta Nos Excrementos [Coprophilous Fungi: The Hidden Biodiversity in Excrement]. Anápolis: Editora Universidade Estadual de Goiás (UEG). |
| [23] |
Dix NJ, Webster J. 1995. Coprophilous fungi. In: Fungal Ecology. Dordrecht: Springer. pp. 203–24 doi: 10.1007/978-94-011-0693-1_8 |
| [24] |
Sun X, Sitters J, Ruytinx J, Wassen MJ, Venterink HO. 2024. Microbial community composition in the dung of five sympatric European herbivore species. |
| [25] |
Abdullah S, Nashat L. 2014. Diversity of soil microfungi in pine forest at Duhok governorate, Kurdistan region, Iraq. |
| [26] |
Mutashar YA. 2023. Morphological and molecular study of fungi isolated from some animal dung in Maysan Province. Thesis. University of Misan, Iraq. |
| [27] |
Halbwachs H, Bässler C. 2020. No bull: dung-dwelling mushrooms show reproductive trait syndromes different from their non-coprophilous allies. |
| [28] |
Larsen K. 1971. Danish endocoprophilous fungi, and their sequence of occurrence. Botanisk Tidsskrift 66(1−2):1−32 |
| [29] |
Sánchez Márquez S, Bills GF, Domínguez Acuña L, Zabalgogeazcoa I. 2010. Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. |
| [30] |
Herrera J, Poudel R, Khidir HH. 2011. Molecular characterization of coprophilous fungal communities reveals sequences related to root-associated fungal endophytes. |
| [31] |
Miranda V, Sede S, Aranda-Rickert A, Rothen C, Scervino JM, et al. 2020. Taxonomy, life cycle and endophytism of coprophilous fungi from an underground desert rodent. |
| [32] |
Makhuvele R, Ncube I, Jansen van Rensburg EL, La Grange DC. 2017. Isolation of fungi from dung of wild herbivores for application in bioethanol production. |
| [33] |
Richardson MJ. 2001. Coprophilous fungi from Brazil. |
| [34] |
Kuyper T, van Peer A, Baars, J. 2021. Coprophilous fungi: closing the loop: improving circularity with manure-loving mushrooms. Wageningen: Wageningen Plant Research. doi: 10.18174/539315 |
| [35] |
Arran V. 2023. The importance of animal manure in agriculture: benefits and its key factors. International Journal of Manures and Fertilizers 11(1):1 |
| [36] |
Hudson HJ. 1968. The ecology of fungi on plant remains above the soil. |
| [37] |
Bills GF, Gloer JB, An Z. 2013. Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. |
| [38] |
Jasim AS, Abass BA, Al-Rubayae IM. 2021. Effect of the crude extract of coprophilous fungi on some bacterial species isolated from cases of mastitis. |
| [39] |
Sarrocco S. 2016. Dung-inhabiting fungi: a potential reservoir of novel secondary metabolites for the control of plant pathogens. |
| [40] |
Tangthirasunun N, Bhat DJ, Poeaim S. 2024. Antibacterial and lignocellulose-degrading enzyme activities of coprophilous fungi obtained from cow dung in Thailand. |
| [41] |
Khiralla A, Rosella S, Yagi S, Mohamed I, Laurain-Mattar D. 2016. Endophytic Fungi: occurrence, classification, function and natural products. In Endophytic Fungi: Diversity, Characterization and Biocontrol, ed. Hughes E. Hawthorne, New York: Nova Science Publishers. pp. 22–35 www.researchgate.net/publication/312198386 |
| [42] |
van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, et al. 2003. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. |
| [43] |
Peterson R, Grinyer J, Nevalainen H. 2011. Secretome of the coprophilous fungus Doratomyces stemonitis C8, isolated from koala feces. |
| [44] |
Cui Z, Zhang X, Yang H, Sun L. 2017. Bioremediation of heavy metal pollution utilizing composite microbial agent of Mucor circinelloides, Actinomucor sp. and Mortierella sp. |
| [45] |
Hyde KD, Noorabadi MT, Thiyagaraja V, He MQ, Johnston PR, et al. 2024. The 2024 outline of fungi and fungus-like taxa. |
| [46] |
Abramczyk BM, Wiktorowicz DG, Okrasińska A, Pawłowska JZ. 2024. Mucor thermorhizoides − a new species from post-mining site in Sudety mountains (Poland). |
| [47] |
Zhang X, Yang H, Cui Z. 2017. Mucor circinelloides: efficiency of bioremediation response to heavy metal pollution. |
| [48] |
Hansel CM, Zeiner CA, Santelli CM, Webb SM. 2012. Mn (II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. |
| [49] |
Falandysz J. 2016. Mercury bio-extraction by fungus Coprinus comatus: a possible bioindicator and mycoremediator of polluted soils? |
| [50] |
Wang Y, Zhang B, Chen N, Wang C, Feng S, et al. 2018. Combined bioremediation of soil co-contaminated with cadmium and endosulfan by Pleurotus eryngii and Coprinus comatus. |
| [51] |
Wu B, Chen R, Yao Y, Gao N, Zuo L, et al. 2015. Mycoremediation potential of Coprinus comatus in soil co-contaminated with copper and naphthalene. |
| [52] |
Tang X, Liu B, Deng Q, Zhang R, Li X, et al. 2018. Strengthening detoxication impacts of Coprinus comatus on nickel and fluoranthene co-contaminated soil by bacterial inoculation. |
| [53] |
Şenol ZM, Keskin ZS, Dinçer E, Ben Ayed A . 2025. Influential lead uptake using dried and inactivated-fungal biomass obtained from Panaeolus papilionaceus: biological activity, equilibrium, and mechanism. |
| [54] |
Geml J, Davis DD, Geiser DM. 2005. Phylogenetic analyses reveal deeply divergent species lineages in the genus Sphaerobolus (Phallales: Basidiomycota). |
| [55] |
Baetsen‐Young AM, Kaminski JE, Tien M. 2017. Lignocellulose degrading capabilities of Sphaerobolus stellatus in creeping bentgrass. |
| [56] |
Winquist E, Valentin L, Moilanen U, Leisola M, Hatakka A, et al. 2009. Development of a fungal pre-treatment process for reduction of organic matter in contaminated soil. |
| [57] |
Cerdá-Olmedo E. 2001. Phycomyces and the biology of light and color. |
| [58] |
Fan CY, Krishnamurthy S. 1995. Enzymes for enhancing bioremediation of petroleum-contaminated soils: a brief review. |
| [59] |
Sista Kameshwar AK, Qin W. 2019. Systematic review of publicly available non-Dikarya fungal proteomes for understanding their plant biomass-degrading and bioremediation potentials. |
| [60] |
Diorio LA, Forchiassin F, Papinutti VL, Sueldo DV. 2003. Enzymatic activity and degradation of different kinds of organic wastes by Saccobolus saccoboloides (Fungi, Ascomycotina). Revista Iberoamericana de Micología 20(1):11−15 |
| [61] |
Luo H, Li X, Li G, Pan Y, Zhang K. 2006. Acanthocytes of Stropharia rugosoannulata function as a nematode-attacking device. |
| [62] |
Damm U, Fourie PH, Crous PW. 2010. Coniochaeta (Lecythophora), Collophora gen. nov. and Phaeomoniella species associated with wood necroses of Prunus trees. |
| [63] |
Daâssi D, Almaghrabi FQ. 2023. Petroleum-degrading fungal isolates for the treatment of soil microcosms. |
| [64] |
Ament-Velásquez SL, Vogan AA. 2022. Podospora anserina. |
| [65] |
Deshmukh R, Khardenavis AA, Purohit HJ. 2016. Diverse metabolic capacities of fungi for bioremediation. |
| [66] |
Corredor D, Duchicela J, Flores FJ, Maya M, Guerron E. 2024. Review of explosive contamination and bioremediation: insights from microbial and bio-omic approaches. |
| [67] |
Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman, G. 2000. Microbial degradation of explosives: biotransformation versus mineralization. |
| [68] |
Kutateladze L, Zakariashvili N, Khokhashvili I, Jobava M, Alexidze T, et al. 2018. Fungal elimination of 2, 4, 6-trinitrotoluene (TNT) from the soils. |
| [69] |
Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W. 1997. Screening for fungi intensively mineralizing 2, 4, 6-trinitrotoluene. |
| [70] |
Law KL, Narayan R. 2022. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. |
| [71] |
Darwish AMG, Abdel-Azeem AM. 2019. Chaetomium enzymes and their applications. In: Recent Developments on Genus Chaetomium, ed. Abdel-Azeem AM. Cham: Springer. pp. 241–49 doi: 10.1007/978-3-030-31612-9_9 |
| [72] |
Domsch KH, Gams W, Anderson TH. 2008. Compendium of soil Fungi. |
| [73] |
Vivi VK, Martins-Franchetti SM, Attili-Angelis D. 2019. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. |
| [74] |
Sin LT, Tueen BS. 2023. Plastics and Sustainability: Practical Approaches. Amsterdam: Elsevier. doi: 10.1016/C2020-0-02015-3 |
| [75] |
Porter R, Černoša A, Fernández-Sanmartín P, Cortizas AM, Aranda E, et al. 2023. Degradation of polypropylene by fungi Coniochaeta hoffmannii and Pleurostoma richardsiae. |
| [76] |
Pardo-Rodríguez ML, Zorro-Mateus PJP. 2021. Biodegradation of polyvinyl chloride by Mucor s.p. and Penicillium s.p. isolated from soil. |
| [77] |
Vats A, Mishra S. 2018. Identification and evaluation of bioremediation potential of laccase isoforms produced by Cyathus bulleri on wheat bran. |
| [78] |
Abbott TP, Wicklow DT. 1984. Degradation of lignin by Cyathus species. |
| [79] |
Salony, Mishra S, Bisaria VS. 2006. Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. |
| [80] |
von Arx JA. 1986. The ascomycet genus Gymnoascus. Persoonia: Molecular Phylogeny and Evolution of Fungi 13(2):173−83 |
| [81] |
Błyskal B. 2014. Gymnoascus arxii's potential in deteriorating woollen textiles dyed with natural and synthetic dyes. |
| [82] |
Akdogan HA, Topuz MC, Urhan AA. 2014. Studies on decolorization of reactive blue 19 textile dye by Coprinus plicatilis. |
| [83] |
Su Y, Xiang Y, Wang S. 2023. Lignin degradation by Coprinus comatus in corn stalk. |
| [84] |
Mtibaà R, de Eugenio L, Ghariani B, Louati I, Belbahri L, et al. 2017. A halotolerant laccase from Chaetomium strain isolated from desert soil and its ability for dye decolourization. |
| [85] |
Krug JC, Benny GL, Keller HW. 2004. Coprophilous fungi. In: Biodiversity of Fungi: Inventory and Monitoring Methods, eds. Mueller GM, Foster MS, Bills GF. USA: Acdemic Press. pp. 467–99 doi: 10.1016/B978-012509551-8/50024-6 |
| [86] |
Rizo J, Díaz D, Reyes-Trejo B, Arellano-Jiménez MJ. 2020. Cu2O nanoparticles for the degradation of methyl parathion. |
| [87] |
Romero LAV, Tejocote-Pérez M, Alcántara-Valladolid AE, Balderas-Hernández P, Roa-Morales G, et al. 2023. Biological translocation of parathion methyl by Pilobolus sp. in corn microsystems. |
| [88] |
Harms H, Schlosser D, Wick LY. 2011. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. |
| [89] |
Bordjiba O, Steiman R, Kadri M, Semadi A, Guiraud P. 2001. Removal of herbicides from liquid media by fungi isolated from a contaminated soil. |
| [90] |
Anasonye F, Winquist E, Kluczek-Turpeinen B, Räsänen M, Salonen K, et al. 2014. Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil. |
| [91] |
Castellet-Rovira F, Lucas D, Villagrasa M, Rodríguez-Mozaz S, Barceló D, et al. 2018. Stropharia rugosoannulata and Gymnopilus luteofolius: promising fungal species for pharmaceutical biodegradation in contaminated water. |
| [92] |
Pozdnyakova N, Schlosser D, Dubrovskaya E, Balandina S, Sigida E, et al. 2018. The degradative activity and adaptation potential of the litter-decomposing fungus Stropharia rugosoannulata. |
| [93] |
Jing XB, He N, Zhang Y, Cao YR, Xu H. 2012. Isolation and characterization of heavy-metal-mobilizing bacteria from contaminated soils and their potential in promoting Pb, Cu, and Cd accumulation by Coprinus comatus. |
| [94] |
Perinpaul JP. 2024. Cow vector. www.vecteezy.com |
| [95] |
Heim R. 2024. Mucor. https://stock.adobe.com/eg/search?k=mucor |
| [96] |
Stevens F. 2018. Pilobolus roridus. www.mykoweb.com/CAF/species/Pilobolus_roridus.html |
| [97] |
Valdés C. 2020. Piptocephalis. www.inaturalist.org/taxa/375053-Piptocephalis |
| [98] |
Gora F. 2022. Chaetomium globosum. www.manmadediy.com/finding-and-removing-chaetomium-mold |
| [99] |
Wood M. 2023. Sphaerobolus stellatus. www.mykoweb.com/CAF/species/Sphaerobolus_stellatus.html |
| [100] |
Emberger G. 2008. Cyathus stercoreus. www.messiah.edu/Oakes/fungi_on_wood/bird%27s nest fungi/species pages/Cyathus stercoreus.htm |