[1]

Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA. 2006. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proceedings of the National Academy of Sciences of the United States of America 103:9578−9583

doi: 10.1073/pnas.0603152103
[2]

Cordovez V, Dini-Andreote F, Carrión VJ, Raaijmakers JM. 2019. Ecology and evolution of plant microbiomes. Annual Review of Microbiology 73:69−88

doi: 10.1146/annurev-micro-090817-062524
[3]

Meyer RS, Purugganan MD. 2013. Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics 14:840−852

doi: 10.1038/nrg3605
[4]

Chen YH, Gols R, Benrey B. 2015. Crop domestication and its impact on naturally selected trophic interactions. Annual Review of Entomology 60:35−58

doi: 10.1146/annurev-ento-010814-020601
[5]

Gutierrez A, Grillo MA. 2022. Effects of domestication on plant-microbiome interactions. Plant and Cell Physiology 63:1654−1666

doi: 10.1093/pcp/pcac108
[6]

Sun Y, Tian L, Chang J, Shi S, Zhang J, et al. 2021. Rice domestication influences the composition and function of the rhizosphere bacterial chemotaxis systems. Plant and Soil 466:81−99

doi: 10.1007/s11104-021-05036-2
[7]

Milla R. 2023. Phenotypic evolution of agricultural crops. Functional Ecology 37:976−988

doi: 10.1111/1365-2435.14278
[8]

Delgado-Baquerizo M, Reich PB, García-Palacios P, Milla R. 2016. Biogeographic bases for a shift in crop C: N: P stoichiometries during domestication. Ecology Letters 19:564−575

doi: 10.1111/ele.12593
[9]

García-Palacios P, Milla R, Delgado-Baquerizo M, Martín-Robles N, Álvaro-Sánchez M, et al. 2013. Side-effects of plant domestication: ecosystem impacts of changes in litter quality. New Phytologist 198:504−513

doi: 10.1111/nph.12127
[10]

Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, et al. 2015. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host & Microbe 17:392−403

doi: 10.1016/j.chom.2015.01.011
[11]

Yin Y, Wang YF, Cui HL, Zhou R, Li L, et al. 2023. Distinctive structure and assembly of phyllosphere microbial communities between wild and cultivated rice. Microbiology Spectrum 11:e04371-22

doi: 10.1128/spectrum.04371-22
[12]

Cardinale M, Grube M, Erlacher A, Quehenberger J, Berg G. 2015. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environmental Microbiology 17:239−252

doi: 10.1111/1462-2920.12686
[13]

Leff JW, Lynch RC, Kane NC, Fierer N. 2017. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. New Phytologist 214:412−423

doi: 10.1111/nph.14323
[14]

Abdullaeva Y, Ambika Manirajan B, Honermeier B, Schnell S, Cardinale M. 2021. Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. Journal of Advanced Research 31:75−86

doi: 10.1016/j.jare.2020.12.008
[15]

Tan X, Xie H, Yu J, Wang Y, Xu J, et al. 2022. Host genetic determinants drive compartment-specific assembly of tea plant microbiomes. Plant Biotechnology Journal 20:2174−2186

doi: 10.1111/pbi.13897
[16]

Oyserman BO, Flores SS, Griffioen T, Pan X, van der Wijk E, et al. 2022. Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nature Communications 13:3228

doi: 10.1038/s41467-022-30849-9
[17]

Vigouroux Y, Barnaud A, Scarcelli N, Thuillet AC. 2011. Biodiversity, evolution and adaptation of cultivated crops. Comptes Rendus Biologies 334:450−457

doi: 10.1016/j.crvi.2011.03.003
[18]

MacFadyen S, Bohan DA. 2010. Crop domestication and the disruption of species interactions. Basic and Applied Ecology 11:116−125

doi: 10.1016/j.baae.2009.11.008
[19]

Mwafulirwa L, Baggs EM, Russell J, George T, Morley N, et al. 2016. Barley genotype influences stabilization of rhizodeposition-derived C and soil organic matter mineralization. Soil Biology and Biochemistry 95:60−69

doi: 10.1016/j.soilbio.2015.12.011
[20]

Hersch-Green EI, Turley NE, Johnson MTJ. 2011. Community genetics: what have we accomplished and where should we be going? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 366:1453−1460

doi: 10.1098/rstb.2010.0331
[21]

Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, et al. 2016. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications 7:12151

doi: 10.1038/ncomms12151
[22]

Voříšková J, Baldrian P. 2013. Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal 7:477−486

doi: 10.1038/ismej.2012.116
[23]

Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64:807−838

doi: 10.1146/annurev-arplant-050312-120106
[24]

Zhu YG, Xiong C, Wei Z, Chen QL, Ma B, et al. 2022. Impacts of global change on the phyllosphere microbiome. New Phytologist 234:1977−1986

doi: 10.1111/nph.17928
[25]

Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17:478−486

doi: 10.1016/j.tplants.2012.04.001
[26]

Pérez-Jaramillo JE, Mendes R, Raaijmakers JM. 2016. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology 90:635−644

doi: 10.1007/s11103-015-0337-7
[27]

Nishida H, Suzaki T. 2018. Nitrate-mediated control of root nodule symbiosis. Current Opinion in Plant Biology 44:129−136

doi: 10.1016/j.pbi.2018.04.006
[28]

Fones HN, Bebber DP, Chaloner TM, Kay WT, Steinberg G, et al. 2020. Threats to global food security from emerging fungal and oomycete crop pathogens. Nature Food 1:332−342

doi: 10.1038/s43016-020-0075-0
[29]

Liu Y, Wang H, Jiang Z, Wang W, Xu R, et al. 2021. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature 590:600−605

doi: 10.1038/s41586-020-03091-w
[30]

Hu B, Wang W, Ou S, Tang J, Li H, et al. 2015. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics 47:834−838

doi: 10.1038/ng.3337
[31]

Tang W, Ye J, Yao X, Zhao P, Xuan W, et al. 2019. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications 10:5279

doi: 10.1038/s41467-019-13187-1
[32]

Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, et al. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America 112:E911−E920

doi: 10.1073/pnas.1414592112
[33]

Kovach MJ, Sweeney MT, McCouch SR. 2007. New insights into the history of rice domestication. Trends in Genetics 23:578−587

doi: 10.1016/j.tig.2007.08.012
[34]

Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology 11:789−799

doi: 10.1038/nrmicro3109
[35]

Simon E, Braun M, Vidic A, Bogyó D, Fábián I, et al. 2011. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environmental Pollution 159:1229−1233

doi: 10.1016/j.envpol.2011.01.034
[36]

Turner S, Pryer KM, Miao VPW, Palmer JD. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology 46:327−338

doi: 10.1111/j.1550-7408.1999.tb04612.x
[37]

Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, et al. 2016. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1:e00009-15

doi: 10.1128/mSystems.00009-15
[38]

Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, et al. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research 47:D259−d264

doi: 10.1093/nar/gky1022
[39]

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41:D590−D596

doi: 10.1093/nar/gks1219
[40]

Zheng B, Zhu Y, Sardans J, Peñuelas J, Su J. 2018. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Science China Life Sciences 61:1451−1462

doi: 10.1007/s11427-018-9364-7
[41]

Põlme S, Abarenkov K, Henrik Nilsson R, Lindahl BD, Clemmensen KE, et al. 2020. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity 105:1−16

doi: 10.1007/s13225-020-00466-2
[42]

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, et al. 2012. Package 'vegan'—Community Ecology Package, version 2.0-4

[43]

Chang J, van Veen JA, Tian C, Kuramae EE. 2022. A review on the impact of domestication of the rhizosphere of grain crops and a perspective on the potential role of the rhizosphere microbial community for sustainable rice crop production. Science of The Total Environment 842:156706

doi: 10.1016/j.scitotenv.2022.156706
[44]

Compant S, Samad A, Faist H, Sessitsch A. 2019. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. Journal of Advanced Research 19:29−37

doi: 10.1016/j.jare.2019.03.004
[45]

Brown AHD. 2010. Variation under domestication in plants: 1859 and today. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 365:2523−2530

doi: 10.1098/rstb.2010.0006
[46]

Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, et al. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology 3:470−480

doi: 10.1038/s41564-018-0129-3
[47]

Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, et al. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91−95

doi: 10.1038/nature11336
[48]

Smulders L, Benítez E, Moreno B, López-García Á, Pozo MJ, et al. 2021. Tomato domestication affects potential functional molecular pathways of root-associated soil bacteria. Plants 10:1942

doi: 10.3390/plants10091942
[49]

Furey GN, Tilman D. 2023. Plant chemical traits define functional and phylogenetic axes of plant biodiversity. Ecology Letters 26:1394−1406

doi: 10.1111/ele.14262
[50]

Lareen A, Burton F, Schäfer P. 2016. Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology 90:575−587

doi: 10.1007/s11103-015-0417-8
[51]

Zeng J, Liu X, Song L, Lin X, Zhang H, et al. 2016. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology and Biochemistry 92:41−49

doi: 10.1016/j.soilbio.2015.09.018
[52]

Zhao ZB, He JZ, Geisen S, Han LL, Wang JT, et al. 2019. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome 7:33

doi: 10.1186/s40168-019-0647-0
[53]

Brachi B, Filiault D, Whitehurst H, Darme P, Le Gars P, et al. 2022. Plant genetic effects on microbial hubs impact host fitness in repeated field trials. Proceedings of the National Academy of Sciences of the United States of America 119:e2201285119

doi: 10.1073/pnas.2201285119