[1]

Zhang AN, Zhao HB, Cheng JB, Li ME, Li SL, et al. 2021. Construction of durable eco-friendly biomass-based flame-retardant coating for cotton fabrics. Chemical Engineering Journal 410:128361

doi: 10.1016/j.cej.2020.128361
[2]

Xu J, Niu Y, Xie Z, Liang F, Guo F, et al. 2023. Synergistic flame retardant effect of carbon nanohorns and ammonium polyphosphate as a novel flame retardant system for cotton fabrics. Chemical Engineering Journal 451:138566

doi: 10.1016/j.cej.2022.138566
[3]

Qu Y, Qi P, Chen F, Liu J, Hua Y, et al. 2024. A bio-based durable reactive flame retardant for cotton fabric based on lentinan. International Journal of Biological Macromolecules 274:133222

doi: 10.1016/j.ijbiomac.2024.133222
[4]

Barbalini M, Bartoli M, Tagliaferro A, Malucelli G. 2020. Phytic acid and biochar: an effective all bio-sourced flame retardant formulation for cotton fabrics. Polymers 12(4):811

doi: 10.3390/polym12040811
[5]

Ling C, Guo L, Wang Z. 2023. A review on the state of flame-retardant cotton fabric: mechanisms and applications. Industrial Crops and Products 194:116264

doi: 10.1016/j.indcrop.2023.116264
[6]

Sattar A, Hafeez S, Hedar M, Saeed M, Hussain T, et al. 2025. Polymer/POSS based robust and emerging flame retardant nanocomposites: a comprehensive review. Nano-Structures & Nano-Objects 41:101427

doi: 10.1016/j.nanoso.2024.101427
[7]

Cao X, Huang YY, Tian XY, Ni YP, Wang YZ. 2025. Facile and atom-economical synthesis of highly efficient chitosan-based flame retardants towards fire-retarding and antibacterial multifunctional coatings on cotton fabrics. International Journal of Biological Macromolecules 300:140205

doi: 10.1016/j.ijbiomac.2025.140205
[8]

Yang Y, Tang Q, Lu Y, Diao S, Liang M, et al. 2024. Synthesis of biobased, durable, and efficient flame retardant for cotton containing P(=O)-N groups using L-lysine. Industrial Crops and Products 217:118804

doi: 10.1016/j.indcrop.2024.118804
[9]

Yao M, Liu L, Ma C, Zhang H, Zhang Y, et al. 2023. A lysine-derived flame retardant for improved flame retardancy, crystallinity, and aqueous-phase degradation of polylactide. Chemical Engineering Journal 462:142189

doi: 10.1016/j.cej.2023.142189
[10]

Wang H, Qiu Q, Li B, Hu Y, Xu L, et al. 2025. Alginate-based flame-retardant coatings for sustainable fire protection: a review. International Journal of Biological Macromolecules 308:142448

doi: 10.1016/j.ijbiomac.2025.142448
[11]

Luo Q, Gao P, Zhou J, Zhang J, Wu W, et al. 2020. Imparting flame resistance to citric acid–modified cotton fabrics using DNA. Journal of Engineered Fibers and Fabrics 15:1−10

doi: 10.1177/1558925020922217
[12]

Li SQ, Tang RC, Yu CB. 2022. Flame retardant treatment of jute fabric with chitosan and sodium alginate. Polymer Degradation and Stability 196:109826

doi: 10.1016/j.polymdegradstab.2022.109826
[13]

Xu F, Zhong L, Zhang C, Wang P, Zhang F, et al. 2019. Novel high-efficiency casein-based P–N-containing flame retardants with multiple reactive groups for cotton fabrics. ACS Sustainable Chemistry & Engineering 7(16):13999−4008

doi: 10.1021/acssuschemeng.9b02474
[14]

He S, Gao YY, Zhao ZY, Huang SC, Chen ZX, et al. 2021. Fully bio-based phytic acid–basic amino acid salt for flame-retardant polypropylene. ACS Applied Polymer Materials 3(3):1488−98

doi: 10.1021/acsapm.0c01356
[15]

Alongi J, Carletto RA, Di Blasio A, Carosio F, Bosco F, et al. 2013. DNA: a novel, green, natural flame retardant and suppressant for cotton. Journal of Materials Chemistry A 1(15):4779−85

doi: 10.1039/c3ta00107e
[16]

Liu Y, Zhao W, Zhang J, Ren Y, Liu X, et al. 2022. Inspired by sodium alginate: amino acids cooperating with sodium ions to prepare phosphorus-free flame retardant lyocell fabric. Cellulose 29:5339−58

doi: 10.1007/s10570-022-04596-5
[17]

Li XL, Shi XH, Chen MJ, Liu QY, Li YM, et al. 2022. Biomass-based coating from chitosan for cotton fabric with excellent flame retardancy and improved durability. Cellulose 29:5289−303

doi: 10.1007/s10570-022-04566-x
[18]

Wang BH, Song WM, Sun Y, Yang JX, Liu Y. 2025. A higher durability flame retardant for regenerated cellulose fabrics based on fully bio-based phytic acid and L-arginine. International Journal of Biological Macromolecules 308:142377

doi: 10.1016/j.ijbiomac.2025.142377
[19]

Chen J, Liu Y, Zhang J, Ren Y, Liu X. 2021. Synthesis of novel arginine-based flame retardant and its application in lyocell fabric. Molecules 26(12):3588

doi: 10.3390/molecules26123588
[20]

Li P, Liu C, Xu YJ, Jiang ZM, Liu Y, et al. 2020. Novel and eco-friendly flame-retardant cotton fabrics with lignosulfonate and chitosan through LbL: flame retardancy, smoke suppression and flame-retardant mechanism. Polymer Degradation and Stability 181:109302

doi: 10.1016/j.polymdegradstab.2020.109302
[21]

Deng SP, Ye CX, Chen XY, Bian LP. 2009. 三种助剂对染色单板耐水色牢度的影响及其FTIR分析[Study on the effect of color fastness of water about three dyeing auxiliary to dyed veneer and its mechanism analysis by FTIR methods]. 福建林学院学报 [Journal of FujianCollege of Forestry] 29(1):45−48 (in Chinese)

doi: 10.3969/j.issn.1001-389X.2009.01.010
[22]

Yang L, Shi J, Luo W, Li X, Wang M, et al. 2023. MFAPP制备阻燃浸渍纸及其在饰面高密度纤维板中的应用[Preparation of flame retardant impregnated paper by MFAPP and its application in veneered high density fiberboard]. 北京林业大学学报[Journal of Beijing Forestry University] 45(12):134−48 (in Chinese)

doi: 10.12171/j.1000-1522.20230196
[23]

Yu J, Pang Z, Zheng C, Zhou T, Zhang J, et al. 2019. Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity. Applied Surface Science 470:84−90

doi: 10.1016/j.apsusc.2018.11.112
[24]

Chen XY, Chen YC, Lin Q. 2008. 单组分环氧胶固化剂及促进剂的改性研究[Modification of curing agent and accelerator for one component epoxy adhesive]. 应用化工[Applied Chemical Industry] 2008(2):146−48 (in Chinese)

doi: 10.16581/j.cnki.issn1671-3206.2008.02.017
[25]

Liu A, Gao Z, Cai G, Li J, Qi C, et al. 2025. Preparation and characterization of expandable graphite/silicone resin co-modified polyurethane-based intumescent flame retardant thermal insulation coatings. Progress in Organic Coatings 205:109316

doi: 10.1016/j.porgcoat.2025.109316
[26]

Guo Q, Xie Y, Xu L, Qiu D. 2023. Double-layered low-smoke and durable flame-retardant coating for cotton fabrics. Polymer 285:126387

doi: 10.1016/j.polymer.2023.126387
[27]

Chen S, Li H, Lai X, Zhang S, Zeng X. 2021. Superhydrophobic and phosphorus-nitrogen flame-retardant cotton fabric. Progress in Organic Coatings 159:106446

doi: 10.1016/j.porgcoat.2021.106446
[28]

Grancaric AM, Botteri L, Alongi J, Tarbuk A. 2016. Silica precursor as synergist for cotton flame retardancy. International Journal of Clothing Science and Technology 28(3):378−86

doi: 10.1108/IJCST-03-2016-0036
[29]

Ma Y, Wu Z, Qu M, Chen R, Guo J, et al. 2025. Hydrophobic surface modified calcium alginate fibers for preparing flame retardant and comfortable Janus fabrics. Carbohydrate Polymers 369:124340

doi: 10.1016/j.carbpol.2025.124340
[30]

Xie S, Mao T, Li L, Xiao H, Wang P. 2025. One stone, three birds: one-pot synthesis of DOPO-based ammonium phosphonate polymer for durable flame-retardant, anti-wrinkle and anti-ultraviolet cotton fabric. Polymer Degradation and Stability 242:111697

doi: 10.1016/j.polymdegradstab.2025.111697
[31]

Yu ZL, Yang N, Apostolopoulou-Kalkavoura V, Qin B, Ma ZY, et al. 2018. Fire-retardant and thermally insulating phenolic-silica aerogels. Angewandte Chemie International Edition 57(17):4538−42

doi: 10.1002/anie.201711717
[32]

Song WM, Wang BH, Fan RY, Liu Y, Wang YZ. 2025. Inspired by traditional printing pastes: green eco-design of phytic acid-modified starch and durable flame-retardant cellulose-based fabrics. Chemical Engineering Journal 523:168366

doi: 10.1016/j.cej.2025.168366
[33]

Li T, Li H, Wei J, Sun G, Sun F, et al. 2025. A durable flame retardant system of phosphate with hydroxyl groups and cross-linking agent for cotton fabrics. Polymer Degradation and Stability 242:111655

doi: 10.1016/j.polymdegradstab.2025.111655
[34]

Xia W, Xu S, Guo W, Xiong L, Han Z, et al. 2025. Research on the application of soybean milk residue in flame retardancy of cotton fabrics. International Journal of Biological Macromolecules 328:147611

doi: 10.1016/j.ijbiomac.2025.147611
[35]

Wang BH, Zhang LY, Song WM, Liu Y. 2024. Alkaline amino acid modification based on biological phytic acid for preparing flame-retardant and antibacterial cellulose-based fabrics. International Journal of Biological Macromolecules 276:134002

doi: 10.1016/j.ijbiomac.2024.134002
[36]

Yan C, Yang M, Cao J, Zhao Y, Yu C, et al. 2024. Bio-based phytic acid/amino acid complex coating for antimicrobial and flame-retardant cotton fabrics. International Journal of Biological Macromolecules 269:132135

doi: 10.1016/j.ijbiomac.2024.132135
[37]

Bevington C, Williams AJ, Guider C, Baker NC, Meyer B, et al. 2022. Development of a flame retardant and an organohalogen flame retardant chemical inventory. Scientific Data 9:295

doi: 10.1038/s41597-022-01351-0
[38]

Li J, Jiang W, Liu M. 2022. Durable phosphorus/nitrogen flame retardant for cotton fabric. Cellulose 29:4725−51

doi: 10.1007/s10570-022-04558-x
[39]

Xu YJ, Zhang KT, Wang JR, Wang YZ. 2025. Biopolymer-based flame retardants and flame-retardant materials. Advanced Materials 37(22):2414880

doi: 10.1002/adma.202414880