[1]

Aghdam MS, Flaherty EJ, Shelp BJ. 2022. γ-aminobutyrate improves the postharvest marketability of horticultural commodities: advances and prospects. Frontiers in Plant Science 13:884572

doi: 10.3389/fpls.2022.884572
[2]

Sun Y, Mehmood A, Battino M, Xiao J, Chen X. 2022. Enrichment of gamma-aminobutyric acid in foods: from conventional methods to innovative technologies. Food Research International 162:11180

doi: 10.1016/j.foodres.2022.111801
[3]

Zhang Z, Xing S, Yuan Y, Zheng Y, Tian Q, et al. 2024. Sulfur dioxide fumigation promotes GABA accumulation and energy metabolism to delay quality deterioration in postharvest table grapes. Postharvest Biology and Technology 215:113022

doi: 10.1016/j.postharvbio.2024.113022
[4]

Ali S, Nawaz A, Naz S, Ali M, Ejaz S, et al. 2023. Exogenous melatonin mitigates chilling injury in zucchini fruit by enhancing antioxidant system activity, promoting endogenous proline and GABA accumulation, and preserving cell wall stability. Postharvest Biology and Technology 204:112445

doi: 10.1016/j.postharvbio.2023.112445
[5]

Liu Y, Hou Y, Yi B, Zhao Y, Bao Y, et al. 2024. Exogenous phytosulfokine α alleviates chilling injury of loquat fruit via regulating sugar, proline, polyamine and γ-aminobutyric acid metabolisms. Food Chemistry 436:137729

doi: 10.1016/j.foodchem.2023.137729
[6]

Wang H, Yin X, Li J, Sun Y, Cheng F, et al. 2025. γ-aminobutyric acid (GABA) treatment improves disease resistance and preserves fresh-cut Mesembryanthemum crystallinum L. LWT 217:117398

doi: 10.1016/j.lwt.2025.117398
[7]

Yan W, Cao M, Shi L, Wu W, Xu F, et al. 2024. γ-Aminobutyric acid delays fruit softening in postharvest kiwifruit by inhibiting starch and cell wall degradation. Postharvest Biology and Technology 213:112916

doi: 10.1016/j.postharvbio.2024.112916
[8]

Zhang H, Pu J, Liu H, Wang M, Du Y, et al. 2023. Effects of L-cysteine and γ-aminobutyric acid treatment on postharvest quality and antioxidant activity of loquat fruit during storage. International Journal of Molecular Sciences 24:10541

doi: 10.3390/ijms241310541
[9]

Chen X, Li N, Liu C, Wang H, Li Y, et al. 2022. Exogenous GABA improves the resistance of apple seedlings to long-term drought stress by enhancing GABA shunt and secondary cell wall biosynthesis. Tree Physiology. 42:2563−2577

doi: 10.1093/treephys/tpac096
[10]

Li M, Zhang X, Li J, Ali M, Wang Y, et al. 2024. GABA primes defense responses against Botrytis cinerea in tomato fruit by modulating ethylene and JA signaling pathways. Postharvest Biology and Technology 208:112665

doi: 10.1016/j.postharvbio.2023.112665
[11]

Zhao Y, Wu Y, Zhang X, Zhu X, Hou Y, et al. 2025. Methyl jasmonate attenuates chilling injury of prune fruit by maintaining ROS homeostasis and regulating GABA metabolism and energy status. Postharvest Biology and Technology 220:113303

doi: 10.1016/j.postharvbio.2024.113303
[12]

Han S, Nan Y, Qu W, He Y, Ban Q, et al. 2018. Exogenous γ-aminobutyric acid treatment that contributes to regulation of malate metabolism and ethylene synthesis in apple fruit during storage. Journal of Agricultural and Food Chemistry 66:13473−13482

doi: 10.1021/acs.jafc.8b04674
[13]

Oketch-Rabah HA, Madden EF, Roe AL, Betz JM. 2021. United States pharmacopeia (USP) safety review of gamma-aminobutyric acid (GABA). Nutrients 13:2742

doi: 10.3390/nu13082742
[14]

Sun B, Di H, Zhang J, Xia P, Huang W, et al. 2021. Effect of light on sensory quality, health-promoting phytochemicals and antioxidant capacity in post-harvest baby mustard. Food Chemistry 339:128057

doi: 10.1016/j.foodchem.2020.128057
[15]

Zheng H, Huang W, Li X, Huang H, Yuan Q, et al. 2023. CRISPR/Cas9-mediated BoaAOP2s editing alters aliphatic glucosinolate side-chain metabolic flux and increases the glucoraphanin content in Chinese kale. Food Research International 170:112995

doi: 10.1016/j.foodres.2023.112995
[16]

Bansal S, Lakra N, Mishra S, Ahlawat YK. 2024. Unraveling the potential of glucosinolates for nutritional enhancement and stress tolerance in Brassica crops. Vegetable Research 4:e015

doi: 10.48130/vegres-0024-0016
[17]

Cheng B, Ran R, Qu Y, Verkerk R, Henry R, et al. 2024. Advancements in balancing glucosinolate production in plants to deliver effective defense and promote human health. Agriculture Communications 2:100040

doi: 10.1016/j.agrcom.2024.100040
[18]

Zhang F, Lin PX, Xia PX, Di HM, Zhang JQ, et al. 2021. The effect of different thawing methods on the health-promoting compounds and antioxidant capacity in frozen baby mustard. RSC Advances 11:9856−9864

doi: 10.1039/D1RA00610J
[19]

Zhang J, Zhao J, Zuo X, You W, Ru X, et al. 2024. Glutamate application maintains quality and antioxidant capacity of fresh-cut carrots by modulating GABA shunt, phenylpropanoid and ROS metabolism. Food Chemistry 443:138545

doi: 10.1016/j.foodchem.2024.138545
[20]

Sun B, Lin PX, Xia PX, Di HM, Zhang JQ, et al. 2020. Low-temperature storage after harvest retards the deterioration in the sensory quality, health-promoting compounds, and antioxidant capacity of baby mustard. RSC Advances 10:36495−36503

doi: 10.1039/D0RA07177C
[21]

Di H, Li Z, Wang Y, Zhang Y, Bian J, et al. 2022. Melatonin treatment delays senescence and maintains the postharvest quality of baby mustard (Brassica juncea var. gemmifera). Frontiers in Plant Science 12:817861

doi: 10.3389/fpls.2021.817861
[22]

Di H, Zhang Y, Ma J, Wei J, Wang Y, et al. 2022. Sucrose treatment delays senescence and maintains the postharvest quality of baby mustard (Brassica juncea var. gemmifera). Food Chemistry 14:100272

doi: 10.1016/j.fochx.2022.100272
[23]

Di H, Liu R, Zhang Y, Chen Z, Ma J, et al. 2024. Individual and combined treatments of 2, 4-epibrassinolide (EBR) and calcium chloride (CaCl2) maintain the postharvest quality of baby mustard. Postharvest Biology and Technology 212:112901

doi: 10.1016/j.postharvbio.2024.112901
[24]

Der Agopian RG, Fabi JP, Cordenunsi-Lysenko BR. 2020. Metabolome and proteome of ethylene-treated papayas reveal different pathways to volatile compounds biosynthesis. Food Research International 131:108975

doi: 10.1016/j.foodres.2019.108975
[25]

Wu Y, Chen H, Wu M, Zhou Y, Yu C, et al. 2025. A vacuolar invertase gene SlVI modulates sugar metabolism and postharvest fruit quality and stress resistance in tomato. Horticulture Research 12:uhae283

doi: 10.1093/hr/uhae283
[26]

Kadota K, Nakai Y, Shimizu K. 2008. A weighted average difference method for detecting differentially expressed genes from microarray data. Algorithms for Molecular Biology 3:8

doi: 10.1186/1748-7188-3-8
[27]

Wang Y, Wei H, Wang S, Yu F, Zhai L, et al. 2025. γ-Aminobutyric acid treatment enhances quality and improves antioxidant activities of fresh-cut Euryale ferox stems during postharvest storage. Frontiers in Nutrition 12:1527555

doi: 10.3389/fnut.2025.1527555
[28]

Liu Q, Li X, Jin S, Dong W, Zhang Y, et al. 2023. γ-Aminobutyric acid treatment induced chilling tolerance in postharvest kiwifruit (Actinidia chinensis cv. Hongyang) via regulating ascorbic acid metabolism. Food Chemistry 404:134661

doi: 10.1016/j.foodchem.2022.134661
[29]

Liu J, Wei L, Zhu L, Li C, Zhang W, et al. 2024. Integrative transcriptome and metabolome analyses reveal the mechanism of melatonin in delaying postharvest senescence in cowpeas. International Journal of Biological Macromolecules 282:137429

doi: 10.1016/j.ijbiomac.2024.137429
[30]

Wang CM, Yang YY, Chen NH, Zeng ZX, Ji SJ, et al. 2022. Physiological and transcription analyses reveal regulatory pathways of 6-benzylaminopurine delaying leaf senescence and maintaining quality in postharvest Chinese flowering cabbage. Food Research International 157:111455

doi: 10.1016/j.foodres.2022.111455
[31]

Chen J, Liang J, Cao S, Wang H, Wei Y, et al. 2024. γ-aminobutyric acid (GABA) inhibits programmed cell death in fresh-cut pumpkin by maintaining mitochondria structural and functional integrity. Postharvest Biology and Technology 216:113091

doi: 10.1016/j.postharvbio.2024.113091
[32]

Zhang Y, Lin B, Tang G, Chen Y, Deng M, et al. 2024. Application of γ-aminobutyric acid improves the postharvest marketability of strawberry by maintaining fruit quality and enhancing antioxidant system. Food Chemistry 21:101252

doi: 10.1016/j.fochx.2024.101252
[33]

Asgarian ZS, Karimi R, Ghabooli M, Maleki M. 2022. Biochemical changes and quality characterization of cold-stored ‘Sahebi’ grape in response to postharvest application of GABA. Food Chemistry 373:131401

doi: 10.1016/j.foodchem.2021.131401
[34]

Yu L, Shao X, Wei Y, Xu F, Wang H. 2017. Sucrose degradation is regulated by 1-methycyclopropene treatment and is related to chilling tolerance in two peach cultivars. Postharvest Biology and Technology 124:25−34

doi: 10.1016/j.postharvbio.2016.09.002
[35]

Han Y, Liang A, Xu D, Zhang Y, Shi J, et al. 2024. Versatile roles of trehalose in plant growth and development and responses to abiotic stress. Vegetable Research 4:e007

doi: 10.48130/vegres-0024-0007
[36]

Di H, Zhao Y, Zhou A, Chen Z, Ma J, et al. 2024. Integrated metabolome and transcriptome analysis revealed color formation in purple leaf mustard (Brassica juncea). Scientia Horticulturae 337:113526

doi: 10.1016/j.scienta.2024.113526
[37]

Wu C, Hao W, Yan L, Zhang H, Zhang J, et al. 2023. Postharvest melatonin treatment enhanced antioxidant activity and promoted GABA biosynthesis in yellow-flesh peach. Food Chemistry 419:136088

doi: 10.1016/j.foodchem.2023.136088
[38]

Carrión-Antolí A, Badiche-El Hilali F, Lorente-Mento JM, Díaz-Mula HM, Serrano M, et al. 2024. Antioxidant systems and quality in sweet cherries are improved by preharvest GABA treatments leading to delay postharvest senescence. International Journal of Molecular Sciences 25:260

doi: 10.3390/ijms25010260
[39]

Wang Y, Chen X, Chen W, Yang Z, Shi L, et al. 2025. Hydrogen-rich water delays post-harvest yellowing in broccoli by inhibiting ethylene and ABA levels, thereby reducing chlorophyll degradation and carotenoid accumulation. Postharvest Biology and Technology 228:113661

doi: 10.1016/j.postharvbio.2025.113661
[40]

Ghimire U, Abeli P, Brecht JK, Pliakoni E, Liu T. 2024. Unique molecular mechanisms revealed for the effects of temperature, CA, ethylene exposure, and 1-MCP on postharvest senescence of broccoli. Postharvest Biology and Technology 213:112919

doi: 10.1016/j.postharvbio.2024.112919
[41]

Saquet AA, Almeida D. 2023. Sensory and instrumental assessments during ripening of 'Rocha' pear: the role of temperature and the inhibition of ethylene action on fruit quality. Technology in Horticulture 3:23

doi: 10.48130/tih-2023-0023
[42]

Zhang D, Luo Y, Wang H, Li X, Miao L, et al. 2025. An antagonism between ethylene signaling and DNA methylation orchestrates the progression of leaf senescence in non‐heading Chinese cabbage. Advanced Science 12:e14954

doi: 10.1002/advs.202414954
[43]

Ouaked F, Rozhon W, Lecourieux D, Hirt H. 2003. A MAPK pathway mediates ethylene signaling in plants. The EMBO Journal 22:1282−1288

doi: 10.1093/emboj/cdg131
[44]

Licausi F, Ohme-Takagi M, Perata P. 2013. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytologist 199:639−649

doi: 10.1111/nph.12291
[45]

Ai S, Liang L, Liu M, Grierson D, Chen K, et al. 2025. PpERF17 alleviates peach fruit postharvest chilling injury under elevated CO2 by activating jasmonic acid and γ-aminobutyric acid biosynthesis. Horticulture Research 12:uhaf014

doi: 10.1093/hr/uhaf014