[1]

Zhou C, Wu S, Li C, Quan W, Wang A. 2023. Response mechanisms of woody plants to high-temperature stress. Plants 12:3643

doi: 10.3390/plants12203643
[2]

Tiwari M, Kumar R, Min D, Krishna Jagadish SV. 2022. Genetic and molecular mechanisms underlying root architecture and function under heat stress—a hidden story. Plant Cell & Environment 45:771−788

doi: 10.1111/pce.14266
[3]

Graci S, Barone A. 2024. Tomato plant response to heat stress: a focus on candidate genes for yield-related traits. Frontiers in Plant Science 14:1245661

doi: 10.3389/fpls.2023.1245661
[4]

Wang X, Tan NWK, Chung FY, Yamaguchi N, Gan ES, et al. 2023. Transcriptional regulators of plant adaptation to heat stress. International Journal of Molecular Sciences 24:13297

doi: 10.3390/ijms241713297
[5]

Bhoi A, Yadu B, Chandra J, Keshavkant S. 2021. Contribution of strigolactone in plant physiology, hormonal interaction and abiotic stresses. Planta 254:28

doi: 10.1007/s00425-021-03678-1
[6]

Lv S, Zhang Y, Li C, Liu Z, Yang N, et al. 2018. Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytologist 217:290−304

doi: 10.1111/nph.14813
[7]

Kapoor RT, Alam P, Chen Y, Ahmad P. 2024. Strigolactones in plants: from development to abiotic stress management. Journal of Plant Growth Regulation 43:903−919

doi: 10.1007/s00344-023-11148-z
[8]

Omoarelojie LO, Kulkarni MG, Finnie JF, Pospíšil T, Strnad M, et al. 2020. Synthetic strigolactone (rac-GR24) alleviates the adverse effects of heat stress on seed germination and photosystem II function in lupine seedlings. Plant Physiology and Biochemistry 155:965−979

doi: 10.1016/j.plaphy.2020.07.043
[9]

Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, et al. 2012. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant & Cell Physiology 53:107−117

doi: 10.1093/pcp/pcr176
[10]

Hu Q, Zhang S, Huang B. 2018. Strigolactones and interaction with auxin regulating root elongation in tall fescue under different temperature regimes. Plant Science 271:34−39

doi: 10.1016/j.plantsci.2018.03.008
[11]

Chi C, Xu X, Wang M, Zhang H, Fang P, et al. 2021. Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato. Horticulture Research 8:237

doi: 10.1038/s41438-021-00668-y
[12]

Ito S, Umehara M, Hanada A, Yamaguchi S, Asami T. 2013. Effects of strigolactone-biosynthesis inhibitor TIS108 on Arabidopsis. Plant Signaling & Behavior 8:e24193

doi: 10.4161/psb.24193
[13]

Özbilen A, Sezer F, Taşkin KM. 2024. Identification and expression of strigolactone biosynthesis and signaling genes and the in vitro effects of strigolactones in olive (Olea europaea L.). Plant Direct 8:e568

doi: 10.1002/pld3.568
[14]

Zhang W, Yuan S, Liu N, Zhang H, Zhang Y. 2025. Exogenous application of paclobutrazol and TIS108 effectively increases shoot branching and mineral element utilization efficiency of ‘Duli’ (Pyrus betulifolia Bunge). Scientia Horticulturae 341:114010

doi: 10.1016/j.scienta.2025.114010
[15]

Li C, Lu X, Liu Y, Xu J, Yu W. 2023. Strigolactone alleviates the adverse effects of salt stress on seed germination in cucumber by enhancing antioxidant capacity. Antioxidants 12:1043

doi: 10.3390/antiox12051043
[16]

Lu X, Liu X, Xu J, Liu Y, Chi Y, et al. 2023. Strigolactone-mediated trehalose enhances salt resistance in tomato seedlings. Horticulturae 9:770

doi: 10.3390/horticulturae9070770
[17]

Hu D, Zhang X, Xue P, Nie Y, Liu J, et al. 2023. Exogenous melatonin ameliorates heat damages by regulating growth, photosynthetic efficiency and leaf ultrastructure of carnation. Plant Physiology and Biochemistry 198:107698

doi: 10.1016/j.plaphy.2023.107698
[18]

Zhao M, Liu Z, Xue P, Zhang X, Wan X. 2025. Genomic characterization of the NAC transcription factors in carnation and function analysis of DcNAC41 involved in thermotolerance. Plant Physiology and Biochemistry 219:109390

doi: 10.1016/j.plaphy.2024.109390
[19]

Zhang X, Jing Y, Liu Z, Xu J, Zhang X, et al. 2025. Exogenous calcium alleviates heat stress in carnation via integrated physiological, anatomical and multi-omics modulations. Industrial Crops and Products 232:121241

doi: 10.1016/j.indcrop.2025.121241
[20]

Yang S, Ulhassan Z, Shah AM, Khan AR, Azhar W, et al. 2021. Salicylic acid underpins silicon in ameliorating chromium toxicity in rice by modulating antioxidant defense, ion homeostasis and cellular ultrastructure. Plant Physiology and Biochemistry 166:1001−1013

doi: 10.1016/j.plaphy.2021.07.013
[21]

Liu W, Zhang R, Xiang C, Zhang R, Wang Q, et al. 2021. Transcriptomic and physiological analysis reveal that α-linolenic acid biosynthesis responds to early chilling tolerance in pumpkin rootstock varieties. Frontiers in Plant Science 12:669565

doi: 10.3389/fpls.2021.669565
[22]

Mu Q, Cai H, Sun S, Wen S, Xu J, et al. 2021. The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes. Agricultural Water Management 243:106475

doi: 10.1016/j.agwat.2020.106475
[23]

Liang Y, Bai T, Liu B, Yu W, Teng W. 2022. Different antioxidant regulation mechanisms in response to aluminum-induced oxidative stress in Eucalyptus species. Ecotoxicology and Environmental Safety 241:113748

doi: 10.1016/j.ecoenv.2022.113748
[24]

Sun Y, Hu D, Xue P, Wan X. 2022. Identification of the DcHsp20 gene family in carnation (Dianthus caryophyllus) and functional characterization of DcHsp17.8 in heat tolerance. Planta 256:2

doi: 10.1007/s00425-022-03915-1
[25]

Sato H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2024. Complex plant responses to drought and heat stress under climate change. The Plant Journal 117:1873−1892

doi: 10.1111/tpj.16612
[26]

Kan Y, Mu XR, Gao J, Lin HX, Lin Y. 2023. The molecular basis of heat stress responses in plants. Molecular Plant 16:1612−1634

doi: 10.1016/j.molp.2023.09.013
[27]

Feng D, Gao Q, Liu J, Tang J, Hua Z, et al. 2023. Categories of exogenous substances and their effect on alleviation of plant salt stress. European Journal of Agronomy 142:126656

doi: 10.1016/j.eja.2022.126656
[28]

Ahmad W, Ali Noor M, Afzal I, Amir Bakhtavar M, Mohsin Nawaz M, et al. 2016. Improvement of sorghum crop through exogenous application of natural growth-promoting substances under a changing climate. Sustainability 8:1330

doi: 10.3390/su8121330
[29]

Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, et al. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology 23:680−694

doi: 10.1038/s41580-022-00479-6
[30]

Kapulnik Y, Koltai H. 2014. Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiology 166:560−569

doi: 10.1104/pp.114.244939
[31]

Brewer PB, Yoneyama K, Filardo F, Meyers E, Scaffidi A, et al. 2016. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 113:6301−6306

doi: 10.1073/pnas.1601729113
[32]

Bao YZ, Yao ZQ, Cao XL, Peng JF, Xu Y, et al. 2017. Transcriptome analysis of Phelipanche aegyptiaca seed germination mechanisms stimulated by fluridone, TIS108, and GR24. PLoS One 12:e0187539

doi: 10.1371/journal.pone.0187539
[33]

Zhong L, Yang C, Chen Y, Guo L, Liu D, et al. 2024. Reduced strigolactone synthesis weakens drought resistance in tall fescue via root development inhibition. Agronomy 14:725

doi: 10.3390/agronomy14040725
[34]

Min Z, Li R, Chen L, Zhang Y, Li Z, et al. 2019. Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiology and Biochemistry 135:99−110

doi: 10.1016/j.plaphy.2018.11.037
[35]

Mostofa MG, Li W, Nguyen KH, Fujita M, Tran LP. 2018. Strigolactones in plant adaptation to abiotic stresses: an emerging avenue of plant research. Plant Cell & Environment 41:2227−2243

doi: 10.1111/pce.13364
[36]

Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, et al. 2011. Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. Journal of Experimental Botany 62:2915−2924

doi: 10.1093/jxb/erq464
[37]

Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. 2013. The biology of strigolactones. Trends in Plant Science 18:72−83

doi: 10.1016/j.tplants.2012.10.003
[38]

Zhang Y, Lv S, Wang G. 2018. Strigolactones are common regulators in induction of stomatal closure in planta. Plant Signaling & Behavior 13:e1444322

doi: 10.1080/15592324.2018.1444322
[39]

Visentin I, Pagliarani C, Deva E, Caracci A, Turečková V, et al. 2020. A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant Cell and Environment 43(7):1613−1624

doi: 10.1111/pce.13758
[40]

Guihur A, Rebeaud ME, Goloubinoff P. 2022. How do plants feel the heat and survive? Trends in Biochemical Sciences 47:824−838

doi: 10.1016/j.tibs.2022.05.004
[41]

Zhang G, Sun Y, Li D, Shi L, Shang W, et al. 2025. Identification, evolution, and functional characterization of the HSF gene family of Paeonia suffruticosa: implications for high-temperature stress response. Ornamental Plant Research 5:e028

doi: 10.48130/opr-0025-0026
[42]

Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Transcriptional regulatory network of plant heat stress response. Trends in Plant Science 22:53−65

doi: 10.1016/j.tplants.2016.08.015
[43]

Wu Z, Gong X, Zhang Y, Li T, Xiang J, et al. 2024. LlbHLH87 interacts with LlSPT to modulate thermotolerance via activation of LlHSFA2 and LlEIN3 in lily. The Plant Journal 120:1457−1473

doi: 10.1111/tpj.17060
[44]

Stirnberg P, van De Sande K, Leyser HM. 2002. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131−1141

doi: 10.1242/dev.129.5.1131
[45]

Shindo M, Shimomura K, Yamaguchi S, Umehara M. 2018. Upregulation of DWARF27 is associated with increased strigolactone levels under sulfur defciency in rice. Plant Direct 2:e00050

doi: 10.1002/pld3.50
[46]

Haider I, Zhang Y, White F, Li C, Incitti R, et al. 2023. Transcriptome analysis of the phosphate starvation response sheds light on strigolactone biosynthesis in rice. The Plant Journal 114:355−370

doi: 10.1111/tpj.16140
[47]

Qiao Y, Lu W, Wang R, Nisa ZU, Yu Y, et al. 2020. Identification and expression analysis of strigolactone biosynthetic and signaling genes in response to salt and alkaline stresses in soybean (Glycine max). DNA and Cell Biology 39:1850−1861

doi: 10.1089/dna.2020.5637
[48]

Zhou X, Tan Z, Zhou Y, Guo S, Sang T, et al. 2022. Physiological mechanism of strigolactone enhancing tolerance to low light stress in cucumber seedlings. BMC Plant Biology 22:30

doi: 10.1186/s12870-021-03414-7
[49]

Wang WN, Min Z, Wu JR, Liu BC, Xu XL, et al. 2021. Physiological and transcriptomic analysis of Cabernet Sauvginon (Vitis vinifera L.) reveals the alleviating effect of exogenous strigolactones on the response of grapevine to drought stress. Plant Physiology and Biochemistry 167:400−409

doi: 10.1016/j.plaphy.2021.08.010