[1]

Gu B, Ju X, Chang J, Ge Y, Vitousek PM. 2015. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America 112(28):8792−8797

doi: 10.1073/pnas.1510211112
[2]

Liu L, Zheng X, Wei X, Kai Z, Xu Y. 2021. Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication. Scientific Reports 11(1):23015

doi: 10.1038/s41598-021-02521-7
[3]

Lu C, Tian H. 2017. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Science Data 9(1):181−192

doi: 10.5194/essd-9-181-2017
[4]

Wang C, Cheng B, Xiao Z, Ji Y, Zhang J, et al. 2025. Nanotechnology-driven coordination of shoot–root systems enhances rice nitrogen use efficiency. Proceedings of the National Academy of Sciences of the United States of America 122(39):e2508456122

doi: 10.1073/pnas.2508456122
[5]

Yamamoto A, Hajima T, Yamazaki D, Aita MN, Ito A, et al. 2022. Competing and accelerating effects of anthropogenic nutrient inputs on climate-driven changes in ocean carbon and oxygen cycles. Science Advances 8(26):eabl9207

doi: 10.1126/sciadv.abl9207
[6]

Lintern A, McPhillips L, Winfrey B, Duncan J, Grady C. 2020. Best management practices for diffuse nutrient pollution: wicked problems across urban and agricultural watersheds. Environmental Science & Technology 54(15):9159−9174

doi: 10.1021/acs.est.9b07511
[7]

Basu NB, Van Meter KJ, Byrnes DK, Van Cappellen P, Brouwer R, et al. 2022. Managing nitrogen legacies to accelerate water quality improvement. Nature Geoscience 15(2):97−105

doi: 10.1038/s41561-021-00889-9
[8]

Bellmore RA, Compton JE, Brooks JR, Fox EW, Hill RA, et al. 2018. Nitrogen inputs drive nitrogen concentrations in U.S. streams and rivers during summer low flow conditions. Science of The Total Environment 639:1349−1359

doi: 10.1016/j.scitotenv.2018.05.008
[9]

Van Meter KJ, Basu NB, Van Cappellen P. 2017. Two centuries of nitrogen dynamics: legacy sources and sinks in the Mississippi and Susquehanna River Basins. Global Biogeochemical Cycles 31(1):2−23

doi: 10.1002/2016GB005498
[10]

Wu Y, Li Y, Men Y, Zhu Z, Sun Y, et al. 2025. Spatial optimization of Best Management Practices (BMPs) for nonpoint source pollution mitigation in agricultural watersheds. Journal of Hydrology 661:133739

doi: 10.1016/j.jhydrol.2025.133739
[11]

You L, Ros GH, Chen Y, Zhang F, de Vries W. 2024. Optimized agricultural management reduces global cropland nitrogen losses to air and water. Nature Food 1:995−1004

doi: 10.1038/s43016-024-01076-w
[12]

Tomczyk N, Naslund L, Cummins C, Bell EV, Bumpers P, et al. 2023. Nonpoint source pollution measures in the Clean Water Act have no detectable impact on decadal trends in nutrient concentrations in U.S. inland waters. Ambio 52(9):1475−1487

doi: 10.1007/s13280-023-01869-6
[13]

Zuidema S, Wollheim WM, Kucharik CJ, Lammers RB. 2024. Existing wetland conservation programs miss nutrient reduction targets. PNAS Nexus 3(4):pgae129

doi: 10.1093/pnasnexus/pgae129
[14]

Tabatabaeefar A, Penn C, Comeau Y, Claveau-Mallet D. 2025. Clogging of reactive filters for phosphorus removal – a review. Journal of Environmental Management 376:124386

doi: 10.1016/j.jenvman.2025.124386
[15]

Kirk L, Compton JE, Neale A, Sabo RD, Christensen J. 2024. Our national nutrient reduction needs: applying a conservation prioritization framework to US agricultural lands. Journal of Environmental Management 351:119758

doi: 10.1016/j.jenvman.2023.119758
[16]

Fleming PM, Stephenson K, Collick AS, Easton ZM. 2022. Targeting for nonpoint source pollution reduction: a synthesis of lessons learned, remaining challenges, and emerging opportunities. Journal of Environmental Management 308:114649

doi: 10.1016/j.jenvman.2022.114649
[17]

McDowell R, Kleinman PJA, Haygarth P, McGrath JM, Smith D, et al. 2025. A review of the development and implementation of the critical source area concept: a reflection of Andrew Sharpley's role in improving water quality. Journal of Environmental Quality 54(4):807−826

doi: 10.1002/jeq2.20551
[18]

Wang M, Huang X, Dong Y, Song Y, Wang D, et al. 2024. Spatiotemporal drivers of agricultural non-point source pollution: a case study of the Huang-Huai-Hai Plain, China. Journal of Environmental Management 370:122606

doi: 10.1016/j.jenvman.2024.122606
[19]

Zhang Z, Montas H, Shirmohammadi A, Leisnham P, Negahban-Azar M. 2023. Effectiveness of BMP plans in different land covers, with random, targeted, and optimized allocation. Science of The Total Environment 892:164428

doi: 10.1016/j.scitotenv.2023.164428
[20]

Shen S, Qin CZ, Zhu LJ, Zhu AX. 2023. Optimizing the implementation plan of watershed best management practices with time-varying effectiveness under stepwise investment. Water Resources Research 59(6):e2022WR032986

doi: 10.1029/2022WR032986
[21]

Bertassello LE, Basu NB, Maes J, Grizzetti B, La Notte A, et al. 2025. The important role of wetland conservation and restoration in nitrogen removal across European river basins. Nature Water 3(8):867−880

doi: 10.1038/s44221-025-00465-0
[22]

Abbas SA, Bailey RT, White JT, Arnold JG, White MJ, et al. 2024. A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+. Hydrology and Earth System Sciences 28(1):21−48

doi: 10.5194/hess-28-21-2024
[23]

US EPA. 2015. Basic information about Nonpoint Source (NPS) pollution. www.epa.gov/nps/basic-information-about-nonpoint-source-nps-pollution

[24]

Priya E, Kumar S, Verma C, Sarkar S, Maji PK. 2022. A comprehensive review on technological advances of adsorption for removing nitrate and phosphate from waste water. Journal of Water Process Engineering 49:103159

doi: 10.1016/j.jwpe.2022.103159
[25]

Remya N, Kumar M, Mohan S, Azzam R. 2011. Influence of organic matter and solute concentration on nitrate sorption in batch and diffusion-cell experiments. Bioresource Technology 102(9):5283−5289

doi: 10.1016/j.biortech.2010.12.044
[26]

Chen R, Chen X, Li H, Wang J, Guo X. 2025. Evaluating soil water and nitrogen transport, nitrate leaching and soil nitrogen concentration uniformity under sprinkler irrigation and fertigation using numerical simulation. Journal of Hydrology 647:132345

doi: 10.1016/j.jhydrol.2024.132345
[27]

Sebilo M, Mayer B, Nicolardot B, Pinay G, Mariotti A. 2013. Long-term fate of nitrate fertilizer in agricultural soils. Proceedings of the National Academy of Sciences of the United States of America 110(45):18185−18189

doi: 10.1073/pnas.1305372110
[28]

Hu M, Liu Y, Zhang Y, Dahlgren RA, Chen D. 2019. Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources. Water Research 150:418−430

doi: 10.1016/j.watres.2018.11.082
[29]

Wu K, Hu M, Zhang Y, Zhou J, Wu H, et al. 2022. Long-term riverine nitrogen dynamics reveal the efficacy of water pollution control strategies. Journal of Hydrology 607:127582

doi: 10.1016/j.jhydrol.2022.127582
[30]

Van Meter KJ, Basu NB, Veenstra JJ, Burras CL. 2016. The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environmental Research Letters 11(3):035014

doi: 10.1088/1748-9326/11/3/035014
[31]

Ilampooranan I, Meter KJV, Basu NB. 2019. A race against time: modeling time lags in watershed response. Water Resources Research 55(5):3941

doi: 10.1029/2018WR023815
[32]

Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, et al. 2012. SWAT: model use, calibration, and validation. Transactions of the ASABE 55(4):1491−1508

doi: 10.13031/2013.42256
[33]

Zhu LJ, Qin CZ, Zhu AX, Liu J, Wu H. 2019. Effects of different spatial configuration units for the spatial optimization of watershed best management practice scenarios. Water 11(2):262

doi: 10.3390/w11020262
[34]

Li J, Hu W, Chau HW, Beare M, Cichota R, et al. 2023. Response of nitrate leaching to no-tillage is dependent on soil, climate, and management factors: a global meta-analysis. Global Change Biology 29(8):2172−2187

doi: 10.1111/gcb.16618
[35]

Wang C, Miao Q, Wei Z, Guo Y, Li J, et al. 2024. Nutrient runoff and leaching under various fertilizer treatments and pedogeographic conditions: a case study in tobacco (Nicotiana tabacum L.) fields of the Erhai Lake basin, China. European Journal of Agronomy 156:127170

doi: 10.1016/j.eja.2024.127170
[36]

Dupas R, Casquin A, Durand P, Viaud V. 2023. Landscape spatial configuration influences phosphorus but not nitrate concentrations in agricultural headwater catchments. Hydrological Processes 37(2):e14816

doi: 10.1002/hyp.14816
[37]

Sharpley A, Jarvie HP, Buda A, May L, Spears B, et al. 2013. Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. Journal of Environmental Quality 42(5):1308−1326

doi: 10.2134/jeq2013.03.0098
[38]

Fang S, Deitch MJ, Gebremicael TG, Angelini C, Ortals CJ. 2024. Identifying critical source areas of non-point source pollution to enhance water quality: integrated SWAT modeling and multi-variable statistical analysis to reveal key variables and thresholds. Water Research 253:121286

doi: 10.1016/j.watres.2024.121286
[39]

Qin CZ, Gao H, Zhu LJ, Zhu AX, Liu J, et al. 2018. Spatial optimization of watershed best management practices based on slope position units. Journal of Soil and Water Conservation 73:504−517

doi: 10.2489/jswc.73.5.504
[40]

Maggioli L, Rodríguez-Caballero E, Cantón Y, Rodríguez-Lozano B, Chamizo S. 2022. Design optimization of biocrust-plant spatial configuration for dry ecosystem restoration using water redistribution and erosion models. Frontiers in Ecology and Evolution 10:765148

doi: 10.3389/fevo.2022.765148
[41]

Wu T, Zhu LJ, Shen S, Zhu AX, Shi M, et al. 2023. Identification of watershed priority management areas based on landscape positions: an implementation using SWAT+. Journal of Hydrology 619:129281

doi: 10.1016/j.jhydrol.2023.129281
[42]

Geng R, Yin P, Sharpley AN. 2019. A coupled model system to optimize the best management practices for nonpoint source pollution control. Journal of Cleaner Production 220:581−592

doi: 10.1016/j.jclepro.2019.02.127
[43]

Zhao J, Zhang N, Liu Z, Zhang Q, Shang C. 2024. SWAT model applications: from hydrological processes to ecosystem services. Science of The Total Environment 931:172605

doi: 10.1016/j.scitotenv.2024.172605
[44]

Molina-Navarro E, Bailey RT, Andersen HE, Thodsen H, Nielsen A, et al. 2019. Comparison of abstraction scenarios simulated by SWAT and SWAT-MODFLOW. Hydrological Sciences Journal 64(4):434−454

doi: 10.1080/02626667.2019.1590583
[45]

Zhou J, Jiao X, Wu H, Zhang Y, Pan Z, et al. 2025. Modeling the impact of legacy nitrogen accumulated in agricultural soil-groundwater on water quality improvement. Environmental Research Letters 20(8):084008

doi: 10.1088/1748-9326/ade7a3
[46]

Bailey RT, Abbas S, Arnold JG, White MJ. 2025. SWAT+MODFLOW: a new hydrologic model for simulating surface-subsurface flow in managed watersheds. Geoscientific Model Development 18(17):5681−5697

doi: 10.5194/gmd-18-5681-2025
[47]

Liu Y, Zeng W, Ao C, Liu Z, Hu X. 2024. Optimizing irrigation and planting strategies to prevent non-point source pollution in the Hetao Irrigation District using SWAT-MODFLOW-RT3D model. Science of The Total Environment 957:177757

doi: 10.1016/j.scitotenv.2024.177757
[48]

Qiu H, Niu J, Baas DG, Phanikumar MS. 2023. An integrated watershed-scale framework to model nitrogen transport and transformations. Science of The Total Environment 882:163348

doi: 10.1016/j.scitotenv.2023.163348
[49]

MPCA. 2016. TMDL and WRAPS guidance. Minnesota Pollution Control Agency. www.pca.state.mn.us/business-with-us/tmdl-and-wraps-guidance

[50]

USEPA O. 2018. ATTAINS calculations of EPA IR categories. www.epa.gov/waterdata/attains-calculations-epa-ir-categories

[51]

Ascott MJ, Gooddy DC, Fenton O, Vero S, Ward RS, et al. 2021. The need to integrate legacy nitrogen storage dynamics and time lags into policy and practice. Science of The Total Environment 781:146698

doi: 10.1016/j.scitotenv.2021.146698
[52]

Das L, Gjorgiev B, Sansavini G. 2024. Uncertainty-aware deep learning for monitoring and fault diagnosis from synthetic data. Reliability Engineering & System Safety 251:110386

doi: 10.1016/j.ress.2024.110386
[53]

Han J, Xin Z, Shan G, Liu Y, Xu B, et al. 2024. Developing nutrient pollution management strategies on a watershed scale under climate change. Ecological Indicators 159:111691

doi: 10.1016/j.ecolind.2024.111691
[54]

Boddiford AN, Kaufman DE, Skipper DE, Uhan NA. 2023. Approximating a linear multiplicative objective in watershed management optimization. European Journal of Operational Research 305(2):547−561

doi: 10.1016/j.ejor.2022.06.006
[55]

Li J, Hu M, Ma W, Liu Y, Dong F, et al. 2023. Optimization and multi-uncertainty analysis of best management practices at the watershed scale: a reliability-level based bayesian network approach. Journal of Environmental Management 331:117280

doi: 10.1016/j.jenvman.2023.117280
[56]

Golden HE, Evenson GR, Christensen JR, Lane CR. 2023. Advancing watershed legacy nitrogen modeling to improve global water quality. Environmental Science & Technology 57(7):2691−2697

doi: 10.1021/acs.est.2c06983
[57]

Canessa S, Taylor G, Clarke RH, Ingwersen D, Vandersteen J, et al. 2020. Risk aversion and uncertainty create a conundrum for planning recovery of a critically endangered species. Conservation Science and Practice 2(2):e138

doi: 10.1111/csp2.138
[58]

Golpaygani A, Keshtkar A, Mashhadi N, Hosseini SM, Afzali A. 2023. Optimal selection of cost-effective biological runoff management scenarios at watershed scale using SWAT-GA tool. Journal of Hydrology: Regional Studies 49:101489

doi: 10.1016/j.ejrh.2023.101489
[59]

Kasprzyk JR, Nataraj S, Reed PM, Lempert RJ. 2013. Many objective robust decision making for complex environmental systems undergoing change. Environmental Modelling & Software 42:55−71

doi: 10.1016/j.envsoft.2012.12.007
[60]

Macasieb RQ, White JT, Pasetto D, Siade AJ. 2025. A probabilistic approach to surrogate-assisted multi-objective optimization of complex groundwater problems. Water Resources Research 61(5):e2024WR038554

doi: 10.1029/2024WR038554
[61]

Kasak K, Kill K, Uuemaa E, Maddison M, Aunap R, et al. 2022. Low water level drives high nitrous oxide emissions from treatment wetland. Journal of Environmental Management 312:114914

doi: 10.1016/j.jenvman.2022.114914
[62]

Li Y, Chen J, Drury CF, Liebig M, Johnson JMF, et al. 2023. The role of conservation agriculture practices in mitigating N2O emissions: a meta-analysis. Agronomy for Sustainable Development 43(5):63

doi: 10.1007/s13593-023-00911-x
[63]

Gu B, Zhang X, Lam SK, Yu Y, van Grinsven HJM, et al. 2023. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613(7942):77−84

doi: 10.1038/s41586-022-05481-8
[64]

Mandrini G, Pittelkow CM, Archontoulis S, Kanter D, Martin NF. 2022. Exploring trade-offs between profit, yield, and the environmental footprint of potential nitrogen fertilizer regulations in the US Midwest. Frontiers in Plant Science 13:852116

doi: 10.3389/fpls.2022.852116
[65]

Schulze C, Glenk K, Sagebiel J, Matzdorf B. 2025. Private or public? Farmer preferences and identities in agri-environmental contract implementation. Journal of Agricultural Economics 00:Early view

doi: 10.1111/1477-9552.70011
[66]

Yang Z, Qiu H, Gao L, Chen L, Liu J. 2023. Surrogate-assisted MOEA/D for expensive constrained multi-objective optimization. Information Sciences 639:119016

doi: 10.1016/j.ins.2023.119016
[67]

Kandulu J, Thorburn P, Biggs J, Verburg K. 2018. Estimating economic and environmental trade-offs of managing nitrogen in Australian sugarcane systems taking agronomic risk into account. Journal of Environmental Management 223:264−274

doi: 10.1016/j.jenvman.2018.06.023
[68]

Hoch JM, Sutanudjaja EH, Wanders N, van Beek RLPH, Bierkens MFP. 2023. Hyper-resolution PCR-GLOBWB: opportunities and challenges from refining model spatial resolution to 1 km over the European continent. Hydrology and Earth System Sciences 27(6):1383−1401

doi: 10.5194/hess-27-1383-2023
[69]

Garzón A, Kapelan Z, Langeveld J, Taormina R. 2022. Machine learning-based surrogate modeling for urban water networks: review and future research directions. Water Resources Research 58(5):e2021WR031808

doi: 10.1029/2021WR031808
[70]

Ma H, Zhang Y, Sun S, Liu T, Shan Y. 2023. A comprehensive survey on NSGA-II for multi-objective optimization and applications. Artificial Intelligence Review 56(12):15217−15270

doi: 10.1007/s10462-023-10526-z
[71]

Dai T, Maher K, Perzan Z. 2025. Machine learning surrogates for efficient hydrologic modeling: insights from stochastic simulations of managed aquifer recharge. Journal of Hydrology 652:132606

doi: 10.1016/j.jhydrol.2024.132606
[72]

Long A, Sun R, Mao X, Duan Q, Wu M. 2025. Surrogate modelling-based multi-objective optimization for best management practices of nonpoint source pollution. Water Research 269:122788

doi: 10.1016/j.watres.2024.122788
[73]

Ahrari A, Verstraete D. 2023. Online model tuning in surrogate-assisted optimization — an effective approach considering the cost–benefit tradeoff. Swarm and Evolutionary Computation 82:101357

doi: 10.1016/j.swevo.2023.101357
[74]

Moustapha M, Galimshina A, Habert G, Sudret B. 2022. Multi-objective robust optimization using adaptive surrogate models for problems with mixed continuous-categorical parameters. Structural and Multidisciplinary Optimization 65(12):357

doi: 10.1007/s00158-022-03457-w
[75]

Deb K, Nejadhashemi AP, Toscano G, Razavi H, Linker L. 2024. Leveraging innovization and transfer learning to optimize best management practices in large-scale watershed management. Environmental Modelling & Software 180:106161

doi: 10.1016/j.envsoft.2024.106161
[76]

Ma J, Rao K, Li R, Yang Y, Li W, et al. 2022. Improved Hadoop-based cloud for complex model simulation optimization: calibration of SWAT as an example. Environmental Modelling & Software 149:105330

doi: 10.1016/j.envsoft.2022.105330
[77]

Zhao P, He S, Wang D, Qi Y, Pei Z, et al. 2025. Unraveling the impacts of geomorphic indicators on sediment connectivity in a typical debris-flow prone small watershed. Journal of Hydrology 659:133256

doi: 10.1016/j.jhydrol.2025.133256
[78]

Costa RCA, Santos RMB, Fernandes LFS, Carvalho de Melo M, Valera CA, et al. 2023. Hydrologic response to land use and land cover change scenarios: an example from the Paraopeba River Basin based on the SWAT model. Water 15(8):1451

doi: 10.3390/w15081451
[79]

Razavi HS, Toscano G, Nejadhashemi AP, Deb K, Linker L. 2025. Next-generation techniques for parameter reduction for BMP multiobjective optimization in watershed planning. Environmental Modelling & Software 193:106651

doi: 10.1016/j.envsoft.2025.106651
[80]

Shavazipour B, Kwakkel JH, Miettinen K. 2025. Let decision-makers direct the search for robust solutions: an interactive framework for multiobjective robust optimization under deep uncertainty. Environmental Modelling & Software 183:106233

doi: 10.1016/j.envsoft.2024.106233
[81]

Bonham N, Kasprzyk J, Zagona E. 2025. Taxonomy of purposes, methods, and recommendations for vulnerability analysis. Environmental Modelling & Software 183:106269

doi: 10.1016/j.envsoft.2024.106269
[82]

González XI, Bert F, Podestá G. 2023. Many objective robust decision-making model for agriculture decisions (MORDMAgro). International Transactions in Operational Research 30(4):1617−1646

doi: 10.1111/itor.12898
[83]

Singh PK, Farrell-Maupin KA, Faghihi D. 2024. A framework for strategic discovery of credible neural network surrogate models under uncertainty. Computer Methods in Applied Mechanics and Engineering 427:117061

doi: 10.1016/j.cma.2024.117061
[84]

Dong F, Li J, Dai C, Niu J, Chen Y, et al. 2022. Understanding robustness in multiscale nutrient abatement: Probabilistic simulation-optimization using Bayesian network emulators. Journal of Cleaner Production 378:134394

doi: 10.1016/j.jclepro.2022.134394
[85]

Toscano-Pulido G, Razavi H, Nejadhashemi AP, Deb K, Linker L. 2024. Large-scale multiobjective optimization for watershed planning and assessment. IEEE Transactions on Systems, Man, and Cybernetics: Systems 54(6):3471−3483

doi: 10.1109/TSMC.2024.3361679
[86]

Rossi R, Bisland C, Sharpe L, Trentacoste E, Williams B, et al. 2022. Identifying and aligning ecosystem services and beneficiaries associated with best management practices in Chesapeake Bay watershed. Environmental Management 69(2):384−409

doi: 10.1007/s00267-021-01561-z
[87]

Cao M, Gao W, Cai Y. 2025. Influence of long-term anthropogenic nitrogen input and its legacy on riverine output. Scientific Reports 15(1):15261

doi: 10.1038/s41598-025-00261-6
[88]

US EPA. 2015. Overview of total maximum daily loads (TMDLs). www.epa.gov/tmdl/overview-total-maximum-daily-loads-tmdls

[89]

NRCS. 2018. Farm bill. Natural Resources Conservation Service. www.nrcs.usda.gov/farmbill

[90]

McLaughlin P, Alexander R, Blomquist J, Devereux O, Noe G, et al. 2022. Power analysis for detecting the effects of best management practices on reducing nitrogen and phosphorus fluxes to the Chesapeake Bay Watershed, USA. Ecological Indicators 136:108713

doi: 10.1016/j.ecolind.2022.108713
[91]

Zhang Q, Shenk GW, Bhatt G, Bertani I. 2024. Integrating monitoring and modeling information to develop an indicator of watershed progress toward nutrient reduction goals. Ecological Indicators 158:111357

doi: 10.1016/j.ecolind.2023.111357
[92]

Velthof GL, Lesschen JP, Webb J, Pietrzak S, Miatkowski Z, et al. 2014. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000–2008. Science of The Total Environment 468–469:1225−1233

doi: 10.1016/j.scitotenv.2013.04.058
[93]

Voulvoulis N, Arpon KD, Giakoumis T. 2017. The EU Water Framework Directive: from great expectations to problems with implementation. Science of The Total Environment 575:358−366

doi: 10.1016/j.scitotenv.2016.09.228
[94]

Röder N, Krämer C, Grajewski R, Lakner S, Matthews A. 2024. What is the environmental potential of the post-2022 common agricultural policy? Land Use Policy 144:107219

doi: 10.1016/j.landusepol.2024.107219
[95]

Pe'er G, Bonn A, Bruelheide H, Dieker P, Eisenhauer N, et al. 2020. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People and Nature 2(2):305−316

doi: 10.1002/pan3.10080
[96]

Hasler B, Termansen M, Nielsen HØ, Daugbjerg C, Wunder S, et al. 2022. European agri-environmental policy: evolution, effectiveness, and challenges. Review of Environmental Economics and Policy 16(1):105−125

doi: 10.1086/718212
[97]

Mu L, Zhang C, Zeng X, Ma R, Li Y, et al. 2025. The impact of the river chief system on transboundary water pollution. Scientific Reports 15(1):8192

doi: 10.1038/s41598-025-92503-w
[98]

Deng Y, Ou Y, Pang S, Yan B, Zhu H, et al. 2025. Multi-objective optimization of best management practices at watershed scale: a case study of drinking water source watersheds in northeast black soil region of China. Agricultural Water Management 318:109736

doi: 10.1016/j.agwat.2025.109736
[99]

Wang Z, Shang H. 2024. Tripartite evolutionary game and simulation analysis of agricultural non-point source pollution control. PLoS One 19(6):e0305191

doi: 10.1371/journal.pone.0305191
[100]

Huan J, Fan Y, Xu X, Zhou L, Zhang H, et al. 2025. Deep learning model based on coupled SWAT and interpretable methods for water quality prediction under the influence of non-point source pollution. Computers and Electronics in Agriculture 231:109985

doi: 10.1016/j.compag.2025.109985
[101]

Zhou J, Wei Y, Wu K, Wu H, Jiao X, et al. 2023. Modification of exploration of long-term nutrient trajectories for nitrogen (ELEMeNT-N) model to quantify legacy nitrogen dynamics in a typical watershed of eastern China. Environmental Research Letters 18(6):064005

doi: 10.1088/1748-9326/acd1a2
[102]

Mohebzadeh H, Biswas A, DeVries B, Rudra R, Yang W, et al. 2025. Integrating genetic algorithm with AnnAGNPS for optimizing BMPs placement to reduce sheet/rill and ephemeral gully erosion. Soil and Tillage Research 252:106598

doi: 10.1016/j.still.2025.106598
[103]

Puche M, Troin M, Fox D, Royer-Gaspard P. 2025. Optimizing spatial discretization according to input data in the soil and water assessment tool: a case study in a coastal Mediterranean Watershed. Water 17(2):239

doi: 10.3390/w17020239
[104]

Badrzadeh N, Samani JMV, Mazaheri M, Kuriqi A. 2022. Evaluation of management practices on agricultural nonpoint source pollution discharges into the rivers under climate change effects. Science of The Total Environment 838:156643

doi: 10.1016/j.scitotenv.2022.156643
[105]

Bhesdadiya RH, Trivedi IN, Jangir P, Jangir N, Kumar A. 2016. An NSGA-III algorithm for solving multi-objective economic/environmental dispatch problem. Cogent Engineering 3:1269383

doi: 10.1080/23311916.2016.1269383
[106]

Li M, Ma H, Lv S, Wang L, Deng S. 2024. Enhanced NSGA-II-based feature selection method for high-dimensional classification. Information Sciences 663:120269

doi: 10.1016/j.ins.2024.120269
[107]

George J, Athira P. 2024. Bayesian framework for uncertainty quantification and bias correction of projected streamflow in climate change impact assessment. Water Resources Management 38(12):4499−4516

doi: 10.1007/s11269-024-03876-y
[108]

Toscano G, Hernandez-Suarez JS, Blank J, Nejadhashemi P, Deb K, et al. 2022. Large-scale multi-objective optimization for water quality in Chesapeake Bay Watershed. 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 2022. pp. 1−9 doi: 10.1109/CEC55065.2022.9870286

[109]

European Commission. 2000. Water framework directive. https://environment.ec.europa.eu/topics/water/water-framework-directive_en

[110]

Zhang HZ, He LY, Zhang Z. 2023. Can transverse eco-compensation mechanism correct resource misallocation in watershed environmental governance? A cost-benefit analysis of the pilot project of Xin'an River in China. Environmental and Resource Economics 84(4):947−973

doi: 10.1007/s10640-022-00743-5