[1]

Zhao X, Jia RD, Zhu J, Yang SH, Hong G. 2020. The achievements of conservation and utilization for wild important flower resources in China. Journal of Plant Genetic Resources 21:1494−1502

doi: 10.13430/j.cnki.jpgr.20200928001
[2]

Chen J, Zhong Y, Zou P, Ni J, Liu Y, et al. 2024. Identification of genomic regions associated with differences in flowering time and inflorescence architecture between Melastoma candidum and M. normale. International Journal of Molecular Sciences 25:10250

doi: 10.3390/ijms251910250
[3]

Huang J, Chen GZ, Ahmad S, Wang Q, Tu S, et al. 2023. Identification, molecular characteristics, and evolution of YABBY gene family in Melastoma dodecandrum. International Journal of Molecular Sciences 24:4174

doi: 10.3390/ijms24044174
[4]

Joffry SM, Yob NJ, Rofiee MS, Affandi MM, Suhaili Z, et al. 2012. Melastoma malabathricum (L.) Smith ethnomedicinal uses, chemical constituents, and pharmacological properties: a review. Evidence-Based Complementary and Alternative Medicine 2012:258434

doi: 10.1155/2012/258434
[5]

Zhou S, Zhi X, Yu R, Liu Y, Zhou R. 2023. Factors contributing to mitogenome size variation and a recurrent intracellular DNA transfer in Melastoma. BMC Genomics 24:370

doi: 10.1186/s12864-023-09488-x
[6]

Ng WL, Cai Y, Wu W, Zhou R. 2017. The complete chloroplast genome sequence of Melastoma candidum (Melastomataceae). Mitochondrial DNA Part B, Resources 2:242−243

doi: 10.1080/23802359.2017.1318680
[7]

Hao Y, Wen Z, Chen B, Han W, Liu Z, et al. 2019. The re-sequencing and re-assembly of complete chloroplast genome of Melastoma dodecandrum (Melastomataceae) from Fujian, China. Mitochondrial DNA Part B, Resources 4:2219−2220

doi: 10.1080/23802359.2019.1624640
[8]

Chen Z, Zheng T, Lin X, Lin Y, Zheng S, et al. 2016. Analysis of the interspecific relationship of Melastoma germplasm detected by ISSR and RAPD. Chinese Journal of Tropical Crops 37:1725−1731 (in Chinese)

[9]

Gu X, Fan Z, Wang Y, He J, Zheng C, et al. 2024. Metabolome and transcriptome joint analysis reveals that different sucrose levels regulate the production of flavonoids and stilbenes in grape callus culture. International Journal of Molecular Sciences 25:10398

doi: 10.3390/ijms251910398
[10]

Watanabe T, Misawa S, Osaki M. 2005. Aluminum accumulation in the roots of Melastoma malabathricum, an aluminum-accumulating plant. Canadian Journal of Botany 83:1518−1522

doi: 10.1139/b05-111
[11]

Michelangeli FA, Almeda F, Goldenberg R, Penneys DS. 2020. A guide to curating new world Melastomataceae collections with a linear generic sequence to world-wide Melastomataceae. Preprints. 127 pp. doi: 10.20944/preprints202010.0203.v2

[12]

Ulloa Ulloa C, Almeda F, Goldenberg R, Kadereit G, Michelangeli FA, et al. 2022. Melastomataceae: global diversity, distribution, and endemism. In Systematics, Evolution, and Ecology of Melastomataceae, eds. Goldenberg R, Michelangeli FA, Almeda F. Cham: Springer International Publishing. pp. 3−28 doi: 10.1007/978-3-030-99742-7_1

[13]

Veranso-Libalah MC, Mertes H, Stone RD, Chen L, Stévart T, et al. 2023. Phylogeny and systematics of the tribe Sonerileae (Melastomataceae) in Africa: a revised taxonomic classification. Journal of Systematics and Evolution 61:657−681

doi: 10.1111/jse.12921
[14]

Flora of China Editorial Committee (Chinese Academy of Sciences). 1993. Flora of China. Beijing, China: Science Press. pp. 153−154 www.iplant.cn/frps

[15]

Huang D, Zhu G. 2014. The current utilization status of ornamental plants of Melastomataceae in Guangdong Province. South China Agriculture 8:1−7 (in Chinese)

doi: 10.3969/j.issn.1673-890X.2014.06.001
[16]

Zou P, Ng WL, Wu W, Dai S, Ning Z, et al. 2017. Similar morphologies but different origins: hybrid status of two more semi-creeping taxa of Melastoma. Frontiers in Plant Science 8:673

doi: 10.3389/fpls.2017.00673
[17]

Chen J, Lan S, Wu S, Hao Y, Wu H, et al. 2013. Leaf surface characteristics of 6 species of Melastoma L. and their taxonomic significance. Journal of Fujian College of Forestry 33:106−112 (in Chinese)

doi: 10.3969/j.issn.1001-389X.2013.02.002
[18]

Wen Z, Zhou Y, Zhai J, Wu S, Lan S, et al. 2020. Confirmation of Melastoma dendrisetosum ( Melastomataceae) as a distinct species based on morphological and micromorphological data. Guihaia 40:1602−1612 (in Chinese)

doi: 10.11931/guihaia.gxzw201901039
[19]

Peng D. 2018. Resources Conservation and Utilization of Melastoma in China. Beijing, China: China Forestry Publishing House. pp. 7−335

[20]

Malucelli TS, Maia FR, Varassin IG. 2018. Breeding system and pollination of Pleroma trichopodum DC. (Melastomataceae): a potential species for the restoration of Atlantic Forest in southern Brazil. Acta Botanica Brasilica 32:402−409

doi: 10.1590/0102-33062018abb0103
[21]

Konzmann S, Hilgendorf F, Niester C, Rech AR, Lunau K. 2020. Morphological specialization of heterantherous Rhynchanthera grandiflora (Melastomataceae) accommodates pollinator diversity. Plant Biology 22:583−590

doi: 10.1111/plb.13102
[22]

Basso-Alves JP, Goldenberg R, Teixeira SP. 2022. Connective modifications and origin of stamen diversity in Melastomataceae. Journal of Plant Research 135:659−680

doi: 10.1007/s10265-022-01405-9
[23]

Melo LRF, Vasconcelos T, Reginato M, Caetano APS, de Brito VLG. 2021. Evolution of stamen dimetrism in Melastomataceae, a large radiation of pollen flowers. Perspectives in Plant Ecology, Evolution and Systematics 48:125589

doi: 10.1016/j.ppees.2021.125589
[24]

Hachiman S, Uejo M, Denda T. 2024. Division of labour between dimorphic stamens in Melastoma candidum (Melastomataceae): Role of stamen strength in the biomechanics of pollination. Journal of Pollination Ecology 37:284−302

doi: 10.26786/1920-7603(2024)810
[25]

Lu G, Wu W, Wang R, Li X, Wang Y. 2009. Division of labor of heteromorphic stamens in Melastoma malabathricum. Biodiversity Science 17:174 (in Chinese)

[26]

Peng D, Lan S, Wu S. 2012. Studies on pollination biology of Melastoma sanguineum sims (Melastomataceae). Journal of Tropical and Subtropical Botany 20:618−625 (in Chinese)

doi: 10.3969/j.issn.1005-3395.2012.06.016
[27]

Oliveira LC, Teixido AL, Trevizan R, Brito VLG. 2020. Bee-mediated selection favors floral sex specialization in a heterantherous species: strategies to solve the pollen dilemma. Plants 9:1685

doi: 10.3390/plants9121685
[28]

Luo Z, Zhang D, Renner SS. 2008. Why two kinds of stamens in buzz-pollinated flowers? Experimental support for Darwin's division-of-labour hypothesis. Functional Ecology 22:794−800

doi: 10.1111/j.1365-2435.2008.01444.x
[29]

de Souza Carvalho Velloso M, de Brito VLG, Caetano APS, Romero R. 2018. Anther specializations related to the division of labor in Microlicia cordata (Spreng.) Cham. (Melastomataceae). Acta Botanica Brasilica 32:349−358

doi: 10.1590/0102-33062017abb0358
[30]

Valadão-Mendes LB, Rocha I, Meireles DAL, Leite FB, Sazima M, et al. 2022. Flower morphology and plant–bee pollinator interactions are related to stamen dimorphism in Melastomataceae. Plant Biology 24:240−248

doi: 10.1111/plb.13359
[31]

Caetano APS, Reginato M, Goldenberg R, Cortez PA, Basso-Alves JP, et al. 2020. Structure and evolution of polysporangiate anthers in Melastomataceae. Perspectives in Plant Ecology, Evolution and Systematics 46:125556

doi: 10.1016/j.ppees.2020.125556
[32]

Bochorny T, Bacci LF, Dellinger AS, Michelangeli FA, Goldenberg R, et al. 2021. Connective appendages in Huberia bradeana (Melastomataceae) affect pollen release during buzz pollination. Plant Biology 23:556−563

doi: 10.1111/plb.13244
[33]

Peng D, Lan S, Wu S. 2014. Pollination biology and breeding system of Melastoma dendrisetosum. Forest Research 27:11−16 (in Chinese)

[34]

He X, Yu Z, Lin X, Huang C, Chen Z. 2019. Research progress in the propagation and breeding of Melastoma. Fujian Science & Technology of Tropical Crops 44:53−57 (in Chinese)

doi: 10.3969/j.issn.1006-2327.2019.03.019
[35]

Xie D, Zhang W, Li S, Wang Y, Liu S, et al. 2019. Introduction and overall assessment of 23 wild species of Melastomataceae. Jiangsu Agricultural Sciences 47:164−168 (in Chinese)

doi: 10.15889/j.issn.1002-1302.2019.14.038
[36]

Ge Y, Zhu Q, Tian D, Pan X, Zhou Y, et al. 2019. Introduction and cultivation of six Melastomataceae species and their ornamental value in Hangzhou. Zhejiang Agricultural Sciences 60:1727−1728, 1735 (in Chinese)

doi: 10.16178/j.issn.0528-9017.20191006
[37]

Dai S, Zhang J, He M, Xiong Y, Wang W, et al. 2016. Two new Melastoma cultivars 'Tianjiao' and 'Xinyuan'. Acta Horticulturae Sinica 43:1847−1848 (in Chinese)

doi: 10.16420/j.issn.0513-353x.2016-0027
[38]

Zou P, Zheng X, Hu X, Dai S, Ni J. 2025. New Melastoma cultivars 'Zishan' and 'Hongfei'. Acta Horticulturae Sinica 52:215−216 (in Chinese)

doi: 10.16420/j.issn.0513-353x.2024-0736
[39]

Zhou Q, Cai Y, Lun Ng W, Wu W, Dai S, et al. 2017. Molecular evidence for natural hybridization between two Melastoma species endemic to Hainan and their widespread congeners. Biodiversity Science 25:638−646

doi: 10.17520/biods.2017060
[40]

Ma G, Lin Y, Jian S, Hu Y, Liu N. 2001. Collection and propagation of wild flower plants in Melastomataceae of South China. Wild Plant Resources of China 6:72−73, 49 (in Chinese)

doi: 10.3969/j.issn.1006-9690.2001.06.031
[41]

Zhang S, Mo L, Chen Z, Li G, Ye S. 2020. Effects of different cultivation substrates on growth of three species of Melastoma L. Forestry and Environmental Science 36:101−106 (in Chinese)

doi: 10.3969/j.issn.1006-4427.2020.02.015
[42]

Jansen S, Watanabe T, Smets E. 2002. Aluminium accumulation in leaves of 127 species in Melastomataceae, with comments on the order Myrtales. Annals of Botany 90:53−64

doi: 10.1093/aob/mcf142
[43]

Jansen S, Watanabe T, Caris P, Geuten K, Lens F, et al. 2004. The distribution and phylogeny of aluminium accumulating plants in the Ericales. Plant Biology 6:498−505

doi: 10.1055/s-2004-820980
[44]

Watanabe T, Osaki M. 2002. Role of organic acids in aluminum accumulation and plant growth in Melastoma malabathricum. Tree Physiology 22:785−792

doi: 10.1093/treephys/22.11.785
[45]

Watanabe T, Misawa S, Hiradate S, Osaki M. 2008. Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator. Plant Signaling & Behavior 3:603−605

doi: 10.4161/psb.3.8.6356
[46]

Selamat SN, Abdullah SRS, Idris M. 2014. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. International Journal of Phytoremediation 16:694−703

doi: 10.1080/15226514.2013.856843
[47]

Liu X, Zhang X, Yi H, Zhou R, Tan G. 2020. The cadmium and lead tolerance of six species of Melastoma plants during germination. Chinese Agricultural Science Bulletin 36:42−48 (in Chinese)

[48]

Khoo DRY. 2021. Phytoremediation of heavy metals : melastoma malabathricum L. Master’s thesis. Universiti Putra Malaysia, Malaysia. 128 pp. https://hdl.handle.net/10497/23194

[49]

Sirat HM, Susanti D, Ahmad F, Takayama H, Kitajima M. 2010. Amides, triterpene and flavonoids from the leaves of Melastoma malabathricum L. Journal of Natural Medicines 64:492−495

doi: 10.1007/s11418-010-0431-8
[50]

Tiwari M, Barooah MS, Bhuyan D. 2023. Phytochemical and bioactive potentialities of Melastoma malabathricum. In Recent Frontiers of Phytochemicals, eds. Pati S, Sarkar T, Lahiri D. Amsterdam: Elsevier. pp. 601−615 doi: 10.1016/b978-0-443-19143-5.00024-4

[51]

Huang G, Ge Y, Gui Z, Zhu M, Liu J, et al. 2021. Toxicity of Melastoma dodecandrum Lour. and its effects on lipopolysaccharide-induced inflammation and oxidative stress. Experimental and Therapeutic Medicine 22:807

doi: 10.3892/etm.2021.10239
[52]

Weng J, Zhou J, Liang L, Li L. 2019. UHPLC/QTOF-MS-based metabolomics reveal the effect of Melastoma dodecandrum extract in type 2 diabetic rats. Pharmaceutical Biology 57:807−815

doi: 10.1080/13880209.2019.1693605
[53]

Zhong R, Miao L, Zhang H, Tan L, Zhao Y, et al. 2022. Anti-inflammatory activity of flavonols via inhibiting MAPK and NF-κB signaling pathways in RAW264.7 macrophages. Current Research in Food Science 5:1176−1184

doi: 10.1016/j.crfs.2022.07.007
[54]

Zheng WJ, Ren YS, Wu ML, Yang YL, Fan Y, et al. 2021. A review of the traditional uses, phytochemistry and biological activities of the Melastoma genus. Journal of Ethnopharmacology 264:113322

doi: 10.1016/j.jep.2020.113322
[55]

Tang T, Wu H, Li Q. 2007. Comparison of flavonoids in medicinal plants Melastoma. Journal of Chinese medicinal materials 30:912−913 (in Chinese)

doi: 10.3321/j.issn:1001-4454.2007.08.005
[56]

He RJ, Wang YF, Yang BY, Liu ZB, Li DP, et al. 2022. Structural characterization and assessment of anti-inflammatory activities of polyphenols and depsidone derivatives from Melastoma malabathricum subsp. normale. Molecules 27:1521

doi: 10.3390/molecules27051521
[57]

He RJ, Li J, Huang YL, Wang YF, Yang BY, et al. 2021. Structural characterization and assessment of anti-inflammatory and anti-tyrosinase activities of polyphenols from Melastoma normale. Molecules 26:3913

doi: 10.3390/molecules26133913
[58]

Prajudtasri N, Nontakitticharoen M, Anguravirutt S. 2019. α-Glucosidase inhibitory activity of phenolic rich extracts obtained from the seeds of melastoma saigonense (kuntze) Merr. Asian Journal of Chemistry 31:2964−2968

doi: 10.14233/ajchem.2019.22332
[59]

Isnaini I, Yasmina A, Nur’amin HW. 2019. Antioxidant and cytotoxicity activities of karamunting (Melastoma malabathricum L.) fruit ethanolic extract and quercetin. Asian Pacific Journal of Cancer Prevention 20:639−643

doi: 10.31557/APJCP.2019.20.2.639
[60]

Zhang Z, Xu Y, Liang J, Sun D, Li H, et al. 2025. Polyphenolics and triterpenoids from the whole herbs of Melastoma dodecandrum Lour. and their anti-inflammatory activity. Fitoterapia 180:106337

doi: 10.1016/j.fitote.2024.106337
[61]

Wong KC, Hag Ali DM, Boey PL. 2012. Chemical constituents and antibacterial activity of Melastoma malabathricum L. Natural Product Research 26:609−618

doi: 10.1080/14786419.2010.538395
[62]

Hu Y, Tang M, Ji X, Miao J, Zhao Y. 2017. Study on the resources of medicinal plants of Melastomataceae in Guangxi Province. Lishizhen Medicine and Materia Medica Research 28:2232−2235

[63]

Miao L, Zhang H, Cheong MS, Zhong R, Garcia-Oliveira P, et al. 2023. Anti-diabetic potential of apigenin, luteolin, and baicalein via partially activating PI3K/Akt/Glut-4 signaling pathways in insulin-resistant HepG2 cells. Food Science and Human Wellness 12:1991−2000

doi: 10.1016/j.fshw.2023.03.021
[64]

Zhao Z, Yang S, Deng Y, Wang L, Zhang Y, et al. 2022. Naringin interferes doxorubicin-induced myocardial injury by promoting the expression of ECHS1. Frontiers in Pharmacology 13:859755

doi: 10.3389/fphar.2022.859755
[65]

Cheng M, Meng L, Zhou X, Zou H, Yu S, et al. 2014. Chemical constituents of flavonoids and their glycosides in Melastoma dodecandrum. China Journal of Chinese Materia Medica 39:3301−3305 (in Chinese)

doi: 10.4268/cjcmm20141718
[66]

Yao L, Liu X. 2010. Advances in the study of chemical constituents, pharmacological activities, and clinical applications of Melastoma. Journal of Jiangxi University of Traditional Chinese Medicine 22:52−55 (in Chinese)

doi: 10.3969/j.issn.1005-9431.2010.06.017
[67]

Chen R, Zhang W, Zhang M, Liu W, Feng W, et al. 2025. Asiatic acid in anticancer effects: emerging roles and mechanisms. Frontiers in Pharmacology 16:1545654

doi: 10.3389/fphar.2025.1545654
[68]

Liu S, Mao J, Qiu W, Zhang X. 2024. Research progress on the chemical constituents and pharmacological effect of She medicine Melastoma Dodecandrum Lour. Chinese Journal of Modern Applied Pharmacy 41:996−1005 (in Chinese)

doi: 10.13748/j.cnki.issn1007-7693.20223893
[69]

Yoshida T, Ito H, Hipolito IJ. 2005. Pentameric ellagitannin oligomers in melastomataceous plants—chemotaxonomic significance. Phytochemistry 66:1972−1983

doi: 10.1016/j.phytochem.2005.01.006
[70]

Wang TZ, Zuo GW, Yao L, Yuan CL, Li HF, et al. 2021. Ursolic acid ameliorates adipose tissue insulin resistance in aged rats via activating the Akt-glucose transporter 4 signaling pathway and inhibiting inflammation. Experimental and Therapeutic Medicine 22:1466

doi: 10.3892/etm.2021.10901
[71]

Oliveira-Costa JF, Meira CS, Neves MVGD, Dos Reis BPZC, Soares MBP. 2022. Anti-inflammatory activities of betulinic acid: a review. Frontiers in Pharmacology 13:883857

doi: 10.3389/fphar.2022.883857
[72]

Miao H, Chen L, Hao L, Zhang X, Chen Y, et al. 2015. Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes. Scientific Reports 5:13092

doi: 10.1038/srep13092
[73]

Yan F, Zhao Q, Gao H, Wang X, Xu K, et al. 2021. Exploring the mechanism of (-)-Epicatechin on premature ovarian insufficiency based on network pharmacology and experimental evaluation. Bioscience Reports 41:BSR20203955

doi: 10.1042/BSR20203955
[74]

He R, Wang Y, Li D, Huang Y. 2020. Phenolic constituents from Melastoma normale. Guihaia 40:641−647 (in Chinese)

doi: 10.11931/guihaia.gxzw201901038
[75]

Mak KK, Zhang S, Low JS, Balijepalli MK, Sakirolla R, et al. 2022. Anti-inflammatory effects of auranamide and patriscabratine—mechanisms and in silico studies. Molecules 27:4992

doi: 10.3390/molecules27154992
[76]

Hao Y, Zhou YZ, Chen B, Chen GZ, Wen ZY, et al. 2022. The Melastoma dodecandrum genome and the evolution of Myrtales. Journal of Genetics and Genomics 49:120−131

doi: 10.1016/j.jgg.2021.10.004
[77]

Zhong Y, Wu W, Sun C, Zou P, Liu Y, et al. 2023. Chromosomal-level genome assembly of Melastoma candidum provides insights into trichome evolution. Frontiers in Plant Science 14:1126319

doi: 10.3389/fpls.2023.1126319
[78]

Liu T, Chen Y, Chao L, Wang S, Wu W, et al. 2014. Extensive hybridization and introgression between Melastoma candidum and M. sanguineum. PLoS One 9:e96680

doi: 10.1371/journal.pone.0096680
[79]

Zhou Y, Zheng R, Peng Y, Chen J, Zhu X, et al. 2023. The first mitochondrial genome of Melastoma dodecandrum resolved structure evolution in Melastomataceae and micro inversions from inner horizontal gene transfer. Industrial Crops and Products 205:117390

doi: 10.1016/j.indcrop.2023.117390
[80]

Dobrogojski J, Adamiec M, Luciński R. 2020. The chloroplast genome: a review. Acta Physiologiae Plantarum 42:98

doi: 10.1007/s11738-020-03089-x
[81]

Reginato M, Neubig KM, Majure LC, Michelangeli FA. 2016. The first complete plastid genomes of Melastomataceae are highly structurally conserved. PeerJ 4:e2715

doi: 10.7717/peerj.2715
[82]

Zheng X, Ren C, Huang S, Li J, Zhao Y. 2019. Structure and features of the complete chloroplast genome of Melastoma dodecandrum. Physiology and Molecular Biology of Plants 25:1043−1054

doi: 10.1007/s12298-019-00651-x
[83]

Zhou Q, Ng WL, Wu W, Zhou R, Liu Y. 2018. Characterization of the complete chloroplast genome sequence of Tigridiopalma magnifica (Melastomataceae). Conservation Genetics Resources 10:571−573

doi: 10.1007/s12686-017-0856-4
[84]

Zheng R, Peng Y, Chen J, Zhu X, Xie K, et al. 2023. The genome-level survey of the WOX gene family in Melastoma dodecandrum Lour. International Journal of Molecular Sciences 24:17349

doi: 10.3390/ijms242417349
[85]

Arpita K, Sharma S, Srivastava H, Kumar K, Mushtaq M, et al. 2023. Genome-wide survey, molecular evolution and expression analysis of Auxin Response Factor (ARF) gene family indicating their key role in seed number per pod in pigeonpea (C. cajan L. Millsp.). International Journal of Biological Macromolecules 253:126833

doi: 10.1016/j.ijbiomac.2023.126833
[86]

Wanichthanarak K, Fahrmann JF, Grapov D. 2015. Genomic, proteomic, and metabolomic data integration strategies. Biomarker Insights 10:1−6

doi: 10.4137/BMI.S29511
[87]

Saberi S, Halmi MIE, Ramle NA, Mahmud K. 2024. Metals accumulation of tropical shrub Melastoma malabathricum L. (Melastomataceae) populations and their relation to soil edaphic factor. Malaysian Applied Biology 53:113−125

doi: 10.55230/mabjournal.v53i1.2793
[88]

Kalita N, Maiti PP. 2024. Pharmacognostical, phytochemical, pharmacological evaluation of Melastoma malabathricum plant Linn.: a review. Journal of Medicinal Plants Studies 12:58−62