| [1] |
Zhao X, Jia RD, Zhu J, Yang SH, Hong G. 2020. The achievements of conservation and utilization for wild important flower resources in China. |
| [2] |
Chen J, Zhong Y, Zou P, Ni J, Liu Y, et al. 2024. Identification of genomic regions associated with differences in flowering time and inflorescence architecture between Melastoma candidum and M. normale. |
| [3] |
Huang J, Chen GZ, Ahmad S, Wang Q, Tu S, et al. 2023. Identification, molecular characteristics, and evolution of YABBY gene family in Melastoma dodecandrum. |
| [4] |
Joffry SM, Yob NJ, Rofiee MS, Affandi MM, Suhaili Z, et al. 2012. Melastoma malabathricum (L.) Smith ethnomedicinal uses, chemical constituents, and pharmacological properties: a review. |
| [5] |
Zhou S, Zhi X, Yu R, Liu Y, Zhou R. 2023. Factors contributing to mitogenome size variation and a recurrent intracellular DNA transfer in Melastoma. |
| [6] |
Ng WL, Cai Y, Wu W, Zhou R. 2017. The complete chloroplast genome sequence of Melastoma candidum (Melastomataceae). |
| [7] |
Hao Y, Wen Z, Chen B, Han W, Liu Z, et al. 2019. The re-sequencing and re-assembly of complete chloroplast genome of Melastoma dodecandrum (Melastomataceae) from Fujian, China. |
| [8] |
Chen Z, Zheng T, Lin X, Lin Y, Zheng S, et al. 2016. Analysis of the interspecific relationship of Melastoma germplasm detected by ISSR and RAPD. Chinese Journal of Tropical Crops 37:1725−1731 (in Chinese) |
| [9] |
Gu X, Fan Z, Wang Y, He J, Zheng C, et al. 2024. Metabolome and transcriptome joint analysis reveals that different sucrose levels regulate the production of flavonoids and stilbenes in grape callus culture. |
| [10] |
Watanabe T, Misawa S, Osaki M. 2005. Aluminum accumulation in the roots of Melastoma malabathricum, an aluminum-accumulating plant. |
| [11] |
Michelangeli FA, Almeda F, Goldenberg R, Penneys DS. 2020. A guide to curating new world Melastomataceae collections with a linear generic sequence to world-wide Melastomataceae. Preprints. 127 pp. doi: 10.20944/preprints202010.0203.v2 |
| [12] |
Ulloa Ulloa C, Almeda F, Goldenberg R, Kadereit G, Michelangeli FA, et al. 2022. Melastomataceae: global diversity, distribution, and endemism. In Systematics, Evolution, and Ecology of Melastomataceae, eds. Goldenberg R, Michelangeli FA, Almeda F. Cham: Springer International Publishing. pp. 3−28 doi: 10.1007/978-3-030-99742-7_1 |
| [13] |
Veranso-Libalah MC, Mertes H, Stone RD, Chen L, Stévart T, et al. 2023. Phylogeny and systematics of the tribe Sonerileae (Melastomataceae) in Africa: a revised taxonomic classification. |
| [14] |
Flora of China Editorial Committee (Chinese Academy of Sciences). 1993. Flora of China. Beijing, China: Science Press. pp. 153−154 www.iplant.cn/frps |
| [15] |
Huang D, Zhu G. 2014. The current utilization status of ornamental plants of Melastomataceae in Guangdong Province. |
| [16] |
Zou P, Ng WL, Wu W, Dai S, Ning Z, et al. 2017. Similar morphologies but different origins: hybrid status of two more semi-creeping taxa of Melastoma. |
| [17] |
Chen J, Lan S, Wu S, Hao Y, Wu H, et al. 2013. Leaf surface characteristics of 6 species of Melastoma L. and their taxonomic significance. |
| [18] |
Wen Z, Zhou Y, Zhai J, Wu S, Lan S, et al. 2020. Confirmation of Melastoma dendrisetosum ( Melastomataceae) as a distinct species based on morphological and micromorphological data. |
| [19] |
Peng D. 2018. Resources Conservation and Utilization of Melastoma in China. Beijing, China: China Forestry Publishing House. pp. 7−335 |
| [20] |
Malucelli TS, Maia FR, Varassin IG. 2018. Breeding system and pollination of Pleroma trichopodum DC. (Melastomataceae): a potential species for the restoration of Atlantic Forest in southern Brazil. |
| [21] |
Konzmann S, Hilgendorf F, Niester C, Rech AR, Lunau K. 2020. Morphological specialization of heterantherous Rhynchanthera grandiflora (Melastomataceae) accommodates pollinator diversity. |
| [22] |
Basso-Alves JP, Goldenberg R, Teixeira SP. 2022. Connective modifications and origin of stamen diversity in Melastomataceae. |
| [23] |
Melo LRF, Vasconcelos T, Reginato M, Caetano APS, de Brito VLG. 2021. Evolution of stamen dimetrism in Melastomataceae, a large radiation of pollen flowers. |
| [24] |
Hachiman S, Uejo M, Denda T. 2024. Division of labour between dimorphic stamens in Melastoma candidum (Melastomataceae): Role of stamen strength in the biomechanics of pollination. |
| [25] |
Lu G, Wu W, Wang R, Li X, Wang Y. 2009. Division of labor of heteromorphic stamens in Melastoma malabathricum. Biodiversity Science 17:174 (in Chinese) |
| [26] |
Peng D, Lan S, Wu S. 2012. Studies on pollination biology of Melastoma sanguineum sims (Melastomataceae). |
| [27] |
Oliveira LC, Teixido AL, Trevizan R, Brito VLG. 2020. Bee-mediated selection favors floral sex specialization in a heterantherous species: strategies to solve the pollen dilemma. |
| [28] |
Luo Z, Zhang D, Renner SS. 2008. Why two kinds of stamens in buzz-pollinated flowers? Experimental support for Darwin's division-of-labour hypothesis. |
| [29] |
de Souza Carvalho Velloso M, de Brito VLG, Caetano APS, Romero R. 2018. Anther specializations related to the division of labor in Microlicia cordata (Spreng.) Cham. (Melastomataceae). |
| [30] |
Valadão-Mendes LB, Rocha I, Meireles DAL, Leite FB, Sazima M, et al. 2022. Flower morphology and plant–bee pollinator interactions are related to stamen dimorphism in Melastomataceae. |
| [31] |
Caetano APS, Reginato M, Goldenberg R, Cortez PA, Basso-Alves JP, et al. 2020. Structure and evolution of polysporangiate anthers in Melastomataceae. |
| [32] |
Bochorny T, Bacci LF, Dellinger AS, Michelangeli FA, Goldenberg R, et al. 2021. Connective appendages in Huberia bradeana (Melastomataceae) affect pollen release during buzz pollination. |
| [33] |
Peng D, Lan S, Wu S. 2014. Pollination biology and breeding system of Melastoma dendrisetosum. Forest Research 27:11−16 (in Chinese) |
| [34] |
He X, Yu Z, Lin X, Huang C, Chen Z. 2019. Research progress in the propagation and breeding of Melastoma. |
| [35] |
Xie D, Zhang W, Li S, Wang Y, Liu S, et al. 2019. Introduction and overall assessment of 23 wild species of Melastomataceae. |
| [36] |
Ge Y, Zhu Q, Tian D, Pan X, Zhou Y, et al. 2019. Introduction and cultivation of six Melastomataceae species and their ornamental value in Hangzhou. |
| [37] |
Dai S, Zhang J, He M, Xiong Y, Wang W, et al. 2016. Two new Melastoma cultivars 'Tianjiao' and 'Xinyuan'. |
| [38] |
Zou P, Zheng X, Hu X, Dai S, Ni J. 2025. New Melastoma cultivars 'Zishan' and 'Hongfei'. |
| [39] |
Zhou Q, Cai Y, Lun Ng W, Wu W, Dai S, et al. 2017. Molecular evidence for natural hybridization between two Melastoma species endemic to Hainan and their widespread congeners. |
| [40] |
Ma G, Lin Y, Jian S, Hu Y, Liu N. 2001. Collection and propagation of wild flower plants in Melastomataceae of South China. |
| [41] |
Zhang S, Mo L, Chen Z, Li G, Ye S. 2020. Effects of different cultivation substrates on growth of three species of Melastoma L. |
| [42] |
Jansen S, Watanabe T, Smets E. 2002. Aluminium accumulation in leaves of 127 species in Melastomataceae, with comments on the order Myrtales. |
| [43] |
Jansen S, Watanabe T, Caris P, Geuten K, Lens F, et al. 2004. The distribution and phylogeny of aluminium accumulating plants in the Ericales. |
| [44] |
Watanabe T, Osaki M. 2002. Role of organic acids in aluminum accumulation and plant growth in Melastoma malabathricum. |
| [45] |
Watanabe T, Misawa S, Hiradate S, Osaki M. 2008. Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator. |
| [46] |
Selamat SN, Abdullah SRS, Idris M. 2014. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. |
| [47] |
Liu X, Zhang X, Yi H, Zhou R, Tan G. 2020. The cadmium and lead tolerance of six species of Melastoma plants during germination. Chinese Agricultural Science Bulletin 36:42−48 (in Chinese) |
| [48] |
Khoo DRY. 2021. Phytoremediation of heavy metals : melastoma malabathricum L. Master’s thesis. Universiti Putra Malaysia, Malaysia. 128 pp. https://hdl.handle.net/10497/23194 |
| [49] |
Sirat HM, Susanti D, Ahmad F, Takayama H, Kitajima M. 2010. Amides, triterpene and flavonoids from the leaves of Melastoma malabathricum L. |
| [50] |
Tiwari M, Barooah MS, Bhuyan D. 2023. Phytochemical and bioactive potentialities of Melastoma malabathricum. In Recent Frontiers of Phytochemicals, eds. Pati S, Sarkar T, Lahiri D. Amsterdam: Elsevier. pp. 601−615 doi: 10.1016/b978-0-443-19143-5.00024-4 |
| [51] |
Huang G, Ge Y, Gui Z, Zhu M, Liu J, et al. 2021. Toxicity of Melastoma dodecandrum Lour. and its effects on lipopolysaccharide-induced inflammation and oxidative stress. |
| [52] |
Weng J, Zhou J, Liang L, Li L. 2019. UHPLC/QTOF-MS-based metabolomics reveal the effect of Melastoma dodecandrum extract in type 2 diabetic rats. |
| [53] |
Zhong R, Miao L, Zhang H, Tan L, Zhao Y, et al. 2022. Anti-inflammatory activity of flavonols via inhibiting MAPK and NF-κB signaling pathways in RAW264.7 macrophages. |
| [54] |
Zheng WJ, Ren YS, Wu ML, Yang YL, Fan Y, et al. 2021. A review of the traditional uses, phytochemistry and biological activities of the Melastoma genus. |
| [55] |
Tang T, Wu H, Li Q. 2007. Comparison of flavonoids in medicinal plants Melastoma. |
| [56] |
He RJ, Wang YF, Yang BY, Liu ZB, Li DP, et al. 2022. Structural characterization and assessment of anti-inflammatory activities of polyphenols and depsidone derivatives from Melastoma malabathricum subsp. normale. |
| [57] |
He RJ, Li J, Huang YL, Wang YF, Yang BY, et al. 2021. Structural characterization and assessment of anti-inflammatory and anti-tyrosinase activities of polyphenols from Melastoma normale. |
| [58] |
Prajudtasri N, Nontakitticharoen M, Anguravirutt S. 2019. α-Glucosidase inhibitory activity of phenolic rich extracts obtained from the seeds of melastoma saigonense (kuntze) Merr. |
| [59] |
Isnaini I, Yasmina A, Nur’amin HW. 2019. Antioxidant and cytotoxicity activities of karamunting (Melastoma malabathricum L.) fruit ethanolic extract and quercetin. |
| [60] |
Zhang Z, Xu Y, Liang J, Sun D, Li H, et al. 2025. Polyphenolics and triterpenoids from the whole herbs of Melastoma dodecandrum Lour. and their anti-inflammatory activity. |
| [61] |
Wong KC, Hag Ali DM, Boey PL. 2012. Chemical constituents and antibacterial activity of Melastoma malabathricum L. |
| [62] |
Hu Y, Tang M, Ji X, Miao J, Zhao Y. 2017. Study on the resources of medicinal plants of Melastomataceae in Guangxi Province. Lishizhen Medicine and Materia Medica Research 28:2232−2235 |
| [63] |
Miao L, Zhang H, Cheong MS, Zhong R, Garcia-Oliveira P, et al. 2023. Anti-diabetic potential of apigenin, luteolin, and baicalein via partially activating PI3K/Akt/Glut-4 signaling pathways in insulin-resistant HepG2 cells. |
| [64] |
Zhao Z, Yang S, Deng Y, Wang L, Zhang Y, et al. 2022. Naringin interferes doxorubicin-induced myocardial injury by promoting the expression of ECHS1. |
| [65] |
Cheng M, Meng L, Zhou X, Zou H, Yu S, et al. 2014. Chemical constituents of flavonoids and their glycosides in Melastoma dodecandrum. |
| [66] |
Yao L, Liu X. 2010. Advances in the study of chemical constituents, pharmacological activities, and clinical applications of Melastoma. |
| [67] |
Chen R, Zhang W, Zhang M, Liu W, Feng W, et al. 2025. Asiatic acid in anticancer effects: emerging roles and mechanisms. |
| [68] |
Liu S, Mao J, Qiu W, Zhang X. 2024. Research progress on the chemical constituents and pharmacological effect of She medicine Melastoma Dodecandrum Lour. |
| [69] |
Yoshida T, Ito H, Hipolito IJ. 2005. Pentameric ellagitannin oligomers in melastomataceous plants—chemotaxonomic significance. |
| [70] |
Wang TZ, Zuo GW, Yao L, Yuan CL, Li HF, et al. 2021. Ursolic acid ameliorates adipose tissue insulin resistance in aged rats via activating the Akt-glucose transporter 4 signaling pathway and inhibiting inflammation. |
| [71] |
Oliveira-Costa JF, Meira CS, Neves MVGD, Dos Reis BPZC, Soares MBP. 2022. Anti-inflammatory activities of betulinic acid: a review. |
| [72] |
Miao H, Chen L, Hao L, Zhang X, Chen Y, et al. 2015. Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes. |
| [73] |
Yan F, Zhao Q, Gao H, Wang X, Xu K, et al. 2021. Exploring the mechanism of (-)-Epicatechin on premature ovarian insufficiency based on network pharmacology and experimental evaluation. |
| [74] |
He R, Wang Y, Li D, Huang Y. 2020. Phenolic constituents from Melastoma normale. |
| [75] |
Mak KK, Zhang S, Low JS, Balijepalli MK, Sakirolla R, et al. 2022. Anti-inflammatory effects of auranamide and patriscabratine—mechanisms and in silico studies. |
| [76] |
Hao Y, Zhou YZ, Chen B, Chen GZ, Wen ZY, et al. 2022. The Melastoma dodecandrum genome and the evolution of Myrtales. |
| [77] |
Zhong Y, Wu W, Sun C, Zou P, Liu Y, et al. 2023. Chromosomal-level genome assembly of Melastoma candidum provides insights into trichome evolution. |
| [78] |
Liu T, Chen Y, Chao L, Wang S, Wu W, et al. 2014. Extensive hybridization and introgression between Melastoma candidum and M. sanguineum. |
| [79] |
Zhou Y, Zheng R, Peng Y, Chen J, Zhu X, et al. 2023. The first mitochondrial genome of Melastoma dodecandrum resolved structure evolution in Melastomataceae and micro inversions from inner horizontal gene transfer. |
| [80] |
Dobrogojski J, Adamiec M, Luciński R. 2020. The chloroplast genome: a review. |
| [81] |
Reginato M, Neubig KM, Majure LC, Michelangeli FA. 2016. The first complete plastid genomes of Melastomataceae are highly structurally conserved. |
| [82] |
Zheng X, Ren C, Huang S, Li J, Zhao Y. 2019. Structure and features of the complete chloroplast genome of Melastoma dodecandrum. |
| [83] |
Zhou Q, Ng WL, Wu W, Zhou R, Liu Y. 2018. Characterization of the complete chloroplast genome sequence of Tigridiopalma magnifica (Melastomataceae). |
| [84] |
Zheng R, Peng Y, Chen J, Zhu X, Xie K, et al. 2023. The genome-level survey of the WOX gene family in Melastoma dodecandrum Lour. |
| [85] |
Arpita K, Sharma S, Srivastava H, Kumar K, Mushtaq M, et al. 2023. Genome-wide survey, molecular evolution and expression analysis of Auxin Response Factor (ARF) gene family indicating their key role in seed number per pod in pigeonpea (C. cajan L. Millsp.). |
| [86] |
Wanichthanarak K, Fahrmann JF, Grapov D. 2015. Genomic, proteomic, and metabolomic data integration strategies. |
| [87] |
Saberi S, Halmi MIE, Ramle NA, Mahmud K. 2024. Metals accumulation of tropical shrub Melastoma malabathricum L. (Melastomataceae) populations and their relation to soil edaphic factor. |
| [88] |
Kalita N, Maiti PP. 2024. Pharmacognostical, phytochemical, pharmacological evaluation of Melastoma malabathricum plant Linn.: a review. Journal of Medicinal Plants Studies 12:58−62 |