[1]

Chen L, Tong DG. 2020. Amorphous boron phosphide nanosheets: a highly efficient capacitive deionization electrode for uranium separation from seawater with superior selectivity. Separation and Purification Technology 250:117175

doi: 10.1016/j.seppur.2020.117175
[2]

Zhang S, Deng S, Bo T, Li Y, Zhao J, et al. 2025. A bio-inspired PDA@MoS2 electrode with high conductivity and excellent antibacterial properties for selective and efficient uranium recovery via capacitive deionization. Chemical Engineering Journal 514:163199

doi: 10.1016/j.cej.2025.163199
[3]

Cai Y, Li P, Yuan Q, Zhao J, Tsiakaras P. 2025. Efficient and selective uranium electrochemical extraction over flexibly engineered bi-functional Polypyrole@MoSe2@MXene. Chemical Engineering Journal 507:160496

doi: 10.1016/j.cej.2025.160496
[4]

Huang M, Xie L, Wang Y, He H, Yu H, et al. 2023. Efficient uranium electrochemical deposition with a functional phytic acid-doped polyaniline/graphite sheet electrode by adsorption-electrodeposition strategy. Chemical Engineering Journal 457:141221

doi: 10.1016/j.cej.2022.141221
[5]

Zhang Q, Miao Y, Xiao Y, Hu J, Gong H, et al. 2025. Modulating the electronic structure of a hydrogen-bonded organic framework to enhance uranium removal via the hydrogen evolution reaction. Inorganic Chemistry Frontiers 12:1935−1949

doi: 10.1039/D4QI02743D
[6]

Shehzad H, Chen J, Shuang MT, Liu Z, Farooqi ZH, et al. 2024. Fabrication of an efficient hierarchical mesoporous 2D-MoS2/CNT/polypyrrole based composite electrodes for competitive and selective U6+ removal using capacitive deionization: mechanistic evaluation through cyclic voltammetry. Colloids and Surfaces A: Physicochemical and Engineering Aspects 680:132637

doi: 10.1016/j.colsurfa.2023.132637
[7]

Kou J, Wang Z, Li M, Zhang X, Hua Y, et al. 2025. Eco-friendly synthesis of TiO2 nanoparticles for improved uranium adsorption in CDI systems. Journal of Environmental Chemical Engineering 13:115230

doi: 10.1016/j.jece.2024.115230
[8]

Cheng Y, Xu Y, Mao H, Zhou J, Liu S, et al. 2024. Nitrogen-doped carbon nanotube encapsulated Co9S8 composite cathode for high-selective capacitive extraction of uranium (VI) from radioactive wastewater. Separation and Purification Technology 342:127020

doi: 10.1016/j.seppur.2024.127020
[9]

Gao J, Wang J, Chen J, Liao S, Cao M, et al. 2022. Valence regulation investigation of key factors on the electrochemical immobilization uranyl from wastewater. Science of The Total Environment 836:155609

doi: 10.1016/j.scitotenv.2022.155609
[10]

Wang P, Dong F, He D, Liu S, Chen N, et al. 2021. Organic acid mediated photoelectrochemical reduction of U(VI) to U(IV) in waste water: electrochemical parameters and spectroscopy. RSC Advances 11:23241−23248

doi: 10.1039/D1RA02505H
[11]

Yuan K, Renock D, Ewing RC, Becker U. 2015. Uranium reduction on magnetite: probing for pentavalent uranium using electrochemical methods. Geochimica et Cosmochimica Acta 156:194−206

doi: 10.1016/j.gca.2015.02.014
[12]

Yuan Y, Cao D, Cui F, Yang Y, Zhang C, et al. 2025. High-capacity uranium extraction from seawater through constructing synergistic multiple dynamic bonds. Nature Water 3:89−98

doi: 10.1038/s44221-024-00346-y
[13]

Chen Z, Wang J, Hao M, Xie Y, Liu X, et al. 2023. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nature Communications 14:1106

doi: 10.1038/s41467-023-36710-x
[14]

Zhang C, Qi J, Cui W, Chen X, Liu X, et al. 2023. A novel 3D sp2 carbon-linked covalent organic framework as a platform for efficient electro-extraction of uranium. Science China Chemistry 66:562−569

doi: 10.1007/s11426-022-1466-9
[15]

Wang S, Li Y, Liu Q, Wang J, Zhao Y, et al. 2023. Photo-/electro-/piezo-catalytic elimination of environmental pollutants. Journal of Photochemistry and Photobiology A: Chemistry 437:114435

doi: 10.1016/j.jphotochem.2022.114435
[16]

Tauk M, Bechelany M, Sistat P, Habchi R, Cretin M, et al. 2024. Ion-selectivity advancements in capacitive deionization: a comprehensive review. Desalination 572:117146

doi: 10.1016/j.desal.2023.117146
[17]

Halimov I, Karimov N, Khamidov S, Sunnatullayev S, Sharopov Q. 2025. Electrosorption of uranium from aqueous solutions: mechanisms, electrode materials, and applications in in-situ leaching. E3S Web Conferences 627:03009

doi: 10.1051/e3sconf/202562703009
[18]

Liu Y, Zhao J, Bo T, Tian R, Wang Y, et al. 2024. Enhanced uranium extraction via charge dynamics and interfacial polarization in MoS2/GO heterojunction electrodes. Small 20:2401374

doi: 10.1002/smll.202401374
[19]

Zhang P, Wang L, Huang Z, Yu J, Li Z, et al. 2020. Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption. ACS Applied Materials & Interfaces 12:15579−15587

doi: 10.1021/acsami.0c00861
[20]

Chen D, Li Y, Zhao X, Shi M, Shi X, et al. 2023. Self-standing porous aromatic framework electrodes for efficient electrochemical uranium extraction. ACS Central Science 9:2326−2332

doi: 10.1021/acscentsci.3c01291
[21]

Wang C, Xu M, Wang W, Hua D. 2024. A supramolecular organic framework-mediated electrochemical strategy achieves highly selective and continuous uranium extraction. Advanced Functional Materials 34:2402130

doi: 10.1002/adfm.202402130
[22]

Liu Q, Wang N, Xie B, Xiao D. 2023. Improved U(VI) electrosorption performance of hierarchical porous heteroatom-doped electrode based on double-template method. Separation and Purification Technology 308:122866

doi: 10.1016/j.seppur.2022.122866
[23]

Sun Z, Liao Y, Zhang Y, Sun S, Kan Q, et al. 2025. Sustainable carbon materials in environmental and energy applications. Sustainable Carbon Materials 1:e007

doi: 10.48130/scm-0025-0002
[24]

Zhou J, Zhou H, Zhang Y, Wu J, Zhang H, et al. 2020. Pseudocapacitive deionization of uranium(VI) with WO3/C electrode. Chemical Engineering Journal 398:125460

doi: 10.1016/j.cej.2020.125460
[25]

Song Y, Zhu C, Sun Q, Aguila B, Abney CW, et al. 2021. Nanospace decoration with uranyl-specific "hooks" for selective uranium extraction from seawater with ultrahigh enrichment index. ACS Central Science 7:1650−1656

doi: 10.1021/acscentsci.1c00906
[26]

Zhang P, Zhang Y, Wu F, Xiao W, Hua W, et al. 2025. Photoisomerization-mediated tunable pore size in metal organic frameworks for U(VI)/V(V) selective separation. Nature Communications 16:2361

doi: 10.1038/s41467-025-57638-4
[27]

Hu Q, Wang D, Liang J, Liu Z, Li J. 2024. Porous carbonized N-doped MOF-199 modified with MWCNTs for the deionization of uranium(VI). Separation and Purification Technology 330:125494

doi: 10.1016/j.seppur.2023.125494
[28]

Yang S, Yin J, Li Q, Wang C, Hua D, et al. 2022. Covalent organic frameworks functionalized electrodes for simultaneous removal of UO22+ and ReO4 with fast kinetics and high capacities by electro-adsorption. Journal of Hazardous Materials 429:128315

doi: 10.1016/j.jhazmat.2022.128315
[29]

Yang S, Yu H, Ma M, Li X, Sheng T, et al. 2025. Low-tortuosity COFs-functionalized carbonized wood electrodes for efficient electrochemical extraction of uranium(VI). Desalination 615:119308

doi: 10.1016/j.desal.2025.119308
[30]

Li H, Li Y, Li B, Dai Y, Chen X. 2020. Melamine-induced novel MSONs heterostructured framework: controlled-switching between MOF and SOF via a self-assembling approach for rapid uranium sequestration. Chemical Engineering Journal 379:122279

doi: 10.1016/j.cej.2019.122279
[31]

Liu Y, Ni S, Wang W, Rong M, Cai H, et al. 2024. Functionalized hydrogen-bonded organic superstructures via molecular self-assembly for enhanced uranium extraction. Journal of Hazardous Materials 464:133002

doi: 10.1016/j.jhazmat.2023.133002
[32]

Wang Z, Kou J, Li M, Zhang X, Hua Y, et al. 2025. Enhancement and sustained uranium removal of 2D transition metal sulfide-graphene oxide composite/carbon cloth cathodes in capacitive deionization system. Desalination 605:118745

doi: 10.1016/j.desal.2025.118745
[33]

Tang X, Zhou L, Xi J, Ouyang J, Liu Z, et al. 2021. Porous chitosan/biocarbon composite membrane as the electrode material for the electrosorption of uranium from aqueous solution. Separation and Purification Technology 274:119005

doi: 10.1016/j.seppur.2021.119005
[34]

Song Y, Hou L, Lan PC, Xing Z, Sun Q, et al. 2025. Creating electrochemical accessibility in covalent organic frameworks for uranium extraction via electrodeposition. Nature Communications 16:7093

doi: 10.1038/s41467-025-62501-7
[35]

Yan C, Liao Y, Shen C, Weng X, Lei R, et al. 2023. Uranium extraction by a graphene-based asymmetric electrode configuration through combined complexation, electro-adsorption, and photocatalytic reduction. Chemical Engineering Journal 461:142012

doi: 10.1016/j.cej.2023.142012
[36]

Wang Y, Wang Y, Ren Q, Feng Z, Li Y, et al. 2025. Unlocking the potential of cotton-derived carbon aerogel for uranium extraction from real radioactive wastewater: a path to amidoxime and polyguanidine modification. Chemical Engineering Journal 519:165635

doi: 10.1016/j.cej.2025.165635
[37]

Li J, Zhang J, Shen J, Wu H, Chen H, et al. 2023. Self-supported electrocatalysts for the hydrogen evolution reaction. Materials Chemistry Frontiers 7:567−606

doi: 10.1039/D2QM00931E
[38]

Zhao Y, Sun Q, Zhang C, Liu F, Wang L, et al. 2023. Self-supported electrocatalysts for high-current-density water/seawater electrolysis. Journal of Alloys and Compounds 968:172286

doi: 10.1016/j.jallcom.2023.172286
[39]

Cao R, Zhang J, Wang D, Sun F, Li N, et al. 2023. Electrodeposition cobalt sulfide nanosheet on laser-induced graphene as capacitive deionization electrodes for uranium adsorption. Chemical Engineering Journal 461:142080

doi: 10.1016/j.cej.2023.142080
[40]

Yu H, Zhou L, Liu Y, Ao X, Ouyang J, et al. 2023. Biocarbon/polyaniline nanofiber electrodes with high hybrid capacitance and hierarchical porous structure for U(VI) electrosorption. Desalination 564:11677

doi: 10.1016/j.desal.2023.116773
[41]

Yang Q, Liu YL, Gong H, Zhang Q, Guo S, et al. 2026. Integrated approach to uranium recovery and organic decomposition with electricity generation in a self-driven PEC system. Journal of Environmental Sciences 160:274−282

doi: 10.1016/j.jes.2025.05.031
[42]

Wang Y, Xie C, Wang G, Zhang F, Xiao Z, et al. 2024. Electrochemistry-assisted in-situ regeneration of oxygen vacancies and Ti(III) active sites for persistent uranium recovery at a low potential. Water Research 258:121817

doi: 10.1016/j.watres.2024.121817
[43]

Zhou L, Li Y, Shao Y, Li J, Wu G, et al. 2024. Interface coupling induced built-in electric fields accelerate electro-assisted uranium extraction over Co3O4@FeOx nanosheet arrays. Applied Catalysis B: Environment and Energy 353:124052

doi: 10.1016/j.apcatb.2024.124052
[44]

Chen C, Wang X, Huang Z, Mo J, Zhang X, et al. 2024. Engineering of self-supported electrocatalysts on a three-dimensional nickel foam platform for efficient water electrolysis. Transactions of Tianjin University 30:103−116

doi: 10.1007/s12209-024-00389-y
[45]

Li T, Yan Z, Chen S, Song Y, Lin X, et al. 2025. Heart trabeculae-inspired superhydrophilic electrode for electric-assisted uranium extraction from seawater. Advanced Functional Materials 35:2412349

doi: 10.1002/adfm.202412349
[46]

Shao Y, Wang C, Liu Z, Liu W, Yu F, et al. 2025. "Carbon armor" structure in MXene-based electrode: facilitating electrochemical uranium extraction. Chemical Engineering Journal 514:163464

doi: 10.1016/j.cej.2025.163464
[47]

Liu Y, Tian R, Zhang S, Bo T, Wang Z, et al. 2024. Capacitive deionization of uranium mediated by dioxygen functionalities in the C = O = C = O segment of polyacrylic acid-functionalized graphene aerogel. Chemical Engineering Journal 481:148388

doi: 10.1016/j.cej.2023.148388
[48]

Zhang C, He D, Ma J, Tang W, Waite TD. 2018. Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: a review. Water Research 128:314−330

doi: 10.1016/j.watres.2017.10.024
[49]

Jin M, Huang X, Wang Z, Chan V, Hu J, et al. 2023. Mn, N co-doped carbon nanospheres for efficient capture of uranium (VI) via capacitive deionization. Chemosphere 342:140190

doi: 10.1016/j.chemosphere.2023.140190
[50]

Ren Q, Wang Y, Wang Y, Feng Z, Du Y, et al. 2025. Inspiring the potential of graphene oxide aerogel for uranium(VI) electrosorption: a precursor reconfiguration strategy and synergistic integration with polyethyleneimine. Desalination 609:118883

doi: 10.1016/j.desal.2025.118883
[51]

Zhang Y, Zhou J, Wang D, Cao R, Li J. 2022. Performance of MXene incorporated MOF-derived carbon electrode on deionization of uranium(VI). Chemical Engineering Journal 430:132702

doi: 10.1016/j.cej.2021.132702
[52]

Liu N, Huang X, Ye Y, Li H, Zhao R, et al. 2025. Enhancing capacitive deionization with element-doped carbon nanotube electrodes for selective uranium ion removal. Desalination 613:119069

doi: 10.1016/j.desal.2025.119069
[53]

Shuang M, Zhou L, Liu Y, Yu H, Ao X, et al. 2023. Electrodeposition nanofabrication of graphene oxide/polypyrrole electrodes with high hybrid specific capacitance for enhancing U(VI) electrosorption. Journal of Environmental Chemical Engineering 11:111498

doi: 10.1016/j.jece.2023.111498
[54]

Yu H, Zhou L, Li Z, Liu Y, Ao X, et al. 2022. Electrodeposited polypyrrole/biomass-derived carbon composite electrodes with high hybrid capacitance and hierarchical porous structure for enhancing U(VI) electrosorption from aqueous solution. Separation and Purification Technology 302:122169

doi: 10.1016/j.seppur.2022.122169
[55]

Liu D, Zhou L, Liu Y, Xia C, Ouyang J, et al. 2024. Electrodeposition fabrication of graphene oxide/α-MnO2/polyaniline hierarchical porous electrodes with large hybrid specific capacitance for efficient U(VI) electrosorption. Journal of Environmental Chemical Engineering 12:113450

doi: 10.1016/j.jece.2024.113450
[56]

Liao Y, Yan C, Zeng K, Liao C, Wang M. 2021. Asymmetric polysaccharide-bound graphene electrode configuration with enhanced electrosorption performance for uranium (VI) ions. Chemical Engineering Journal 424:130351

doi: 10.1016/j.cej.2021.130351
[57]

Huang J, Huang B, Jin T, Liu Z, Huang D, et al. 2022. Electrosorption of uranium (VI) from aqueous solution by phytic acid modified chitosan: an experimental and DFT study. Separation and Purification Technology 284:120284

doi: 10.1016/j.seppur.2021.120284
[58]

Zhao X, Chen D, Shi M, Zhao R. 2024. Anchoring chitosan/phytic acid complexes on polypyrrole nanotubes as capacitive deionization electrodes for uranium capture from wastewater. International Journal of Biological Macromolecules 270:132491

doi: 10.1016/j.ijbiomac.2024.132491
[59]

Jiao R, Chen Z, Zeng S, Wang D, Li J. 2023. Electrosorption of uranium (VI) by sulfonic acid-decorated FeOOH nanorods. Journal of Environmental Chemical Engineering 11:111275

doi: 10.1016/j.jece.2023.111275
[60]

Liao Y, Lei R, Weng X, Yan C, Fu J, et al. 2023. Uranium capture by a layered 2D/2D niobium phosphate/holey graphene architecture via an electro-adsorption and electrocatalytic reduction coupling process. Journal of Hazardous materials 442:130054

doi: 10.1016/j.jhazmat.2022.130054
[61]

Wang D, Zhou J, Zhang Y, Zhang J, Liang J, et al. 2023. The electrosorption of uranium (VI) onto the modified porous biocarbon with ammonia low-temperature plasma: kinetics and mechanism. Chemical Engineering Journal 463:142413

doi: 10.1016/j.cej.2023.142413
[62]

Liu W, Yang Y, Cheng R, Wu X, Chen T, et al. 2023. Facet-dependent electrochemical uranium extraction in seawater over Fe3O4 catalysts. Separation and Purification Technology 319:124054

doi: 10.1016/j.seppur.2023.124054
[63]

Li J, Ren J, Li S, Li G, Li J, et al. 2024. Potential industrial applications of photo/electrocatalysis: recent progress and future challenges. Green Energy & Environment 9:859−876

doi: 10.1016/j.gee.2023.05.003
[64]

Liu C, Hsu PC, Xie J, Zhao J, Wu T, et al. 2017. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nature Energy 2:17007

doi: 10.1038/nenergy.2017.7
[65]

Liu J, Deng H, Zhang J, Lin X, Liu H, et al. 2025. Effective electrochemical uranium extraction from aqueous solution using boron-doped diamond films as a sustainable electrode. Separation and Purification Technology 367:132872

doi: 10.1016/j.seppur.2025.132872
[66]

Yuan K, Antonio MR, Ilton ES, Li Z, Becker U. 2022. Pentavalent uranium enriched mineral surface under electrochemically controlled reducing environments. ACS Earth and Space Chemistry 6:1204−1212

doi: 10.1021/acsearthspacechem.1c00413
[67]

Liu T, Yuan J, Zhang B, Liu W, Lin L, et al. 2019. Removal and recovery of uranium from groundwater using direct electrochemical reduction method: performance and implications. Environmental Science & Technology 53:14612−14619

doi: 10.1021/acs.est.9b06790
[68]

Wang Y, Wang Y, Song M, Chen S, Wei J, et al. 2023. Electrochemical-mediated regenerable FeII active sites for efficient uranium extraction at ultra-low cell voltage. Angewandte Chemie International Edition 62:e202217601

doi: 10.1002/anie.202217601
[69]

Wang Y, Wen G, Liu Z, Thuy Nga T, Dong C, et al. 2025. Bipolar electrochemical uranium extraction from seawater with ultra-low cell voltage. Nature Sustainability 8:682−691

doi: 10.1038/s41893-025-01567-z
[70]

Lin L, Liu T, Qie Y, Liu W, Meng Y, et al. 2022. Electrocatalytic removal of low-concentration uranium using TiO2 nanotube arrays/Ti mesh electrodes. Environmental Science & Technology 56:13327−13337

doi: 10.1021/acs.est.2c02632
[71]

Jin H, Hu Y, Shen Z, Pan H, Bao H, et al. 2025. Electrochemical upcycling of uranyl from radioactive organic wastewater with a self-standing covalent-organic framework electrode. Nature Communications 16:3574

doi: 10.1038/s41467-025-58747-w
[72]

Liu X, Xie Y, Hao M, Chen Z, Yang H, et al. 2022. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst. Advanced Science 9:2201735

doi: 10.1002/advs.202201735
[73]

Li G, Liu Y, Jiao C, Jiang Z, Zhang J, et al. 2025. Direct recovery of high-purity uranium from fluoride-containing nuclear wastewater via extraction materials with ensemble Lewis sites and a tandem electrochemical device. Water Research 279:123467

doi: 10.1016/j.watres.2025.123467
[74]

Wang X, Li G, Huang H, Jin H, Liu Y, et al. 2025. Implanting open active pairs into open flower-structured Cu-S-O nanosheets for electrochemical uranium extraction in radioactive wastewater. Applied Catalysis B: Environment and Energy 367:125081

doi: 10.1016/j.apcatb.2025.125081
[75]

Jiao R, Zeng S, Li J. 2025. Electrocatalytic oxygen reduction induced self-extraction of uranium. Separation and Purification Technology 359:130436

doi: 10.1016/j.seppur.2024.130436
[76]

Jian J, Kang H, Yu D, Qiao X, Liu Y, et al. 2023. Bi-functional Co/Al modified 1T-MoS2/rGO catalyst for enhanced uranium extraction and hydrogen evolution reaction in seawater. Small 19:2207378

doi: 10.1002/smll.202207378
[77]

Liu D, Zhang Y. 2021. Synergistic photo/electrocatalysis for energy conversion and storage. Matter 4:2678−2680

doi: 10.1016/j.matt.2021.07.007
[78]

Ye Y, Jin J, Liang Y, Qin Z, Tang X, et al. 2021. Efficient and durable uranium extraction from uranium mine tailings seepage water via a photoelectrochemical method. iScience 24:103230

doi: 10.1016/j.isci.2021.103230
[79]

Liang L, Zhao Y, Zhang W, Yan H, Chen M, et al. 2024. Engineering of sp2-Carbon-Conjugated porous polymer electrodes for Solar-Driven electrochemical uranium extraction. Chemical Engineering Journal 496:153894

doi: 10.1016/j.cej.2024.153894
[80]

Joy J, Mathew J, George SC. 2018. Nanomaterials for photoelectrochemical water splitting - review. International Journal of Hydrogen Energy 43:4804−4817

doi: 10.1016/j.ijhydene.2018.01.099
[81]

Li S, Yang X, Wang Q, Shang H, Xu Y, et al. 2024. One-dimensional nanostructure arrays with Schottky Junction enhanced charge separation for the photoelectrocatalytic selective removal of uranium from wastewater. Nano Energy 128:109866

doi: 10.1016/j.nanoen.2024.109866
[82]

Kim YK, Lee S, Ryu J, Park H. 2015. Solar conversion of seawater uranium (VI) using TiO2 electrodes. Applied Catalysis B: Environmental 163:584−590

doi: 10.1016/j.apcatb.2014.08.041
[83]

Hu L, Yan XW, Zhang XJ, Shan D. 2018. Integration of adsorption and reduction for uranium uptake based on SrTiO3/TiO2 electrospun nanofibers. Applied Surface Science 428:819−824

doi: 10.1016/j.apsusc.2017.09.216
[84]

Lee S, Kang U, Piao G, Kim S, Han DS, et al. 2017. Homogeneous photoconversion of seawater uranium using copper and iron mixed-oxide semiconductor electrodes. Applied Catalysis B: Environmental 207:35−41

doi: 10.1016/j.apcatb.2017.02.004
[85]

Dai Z, Lian J, Sun Y, Li L, Zhang H, et al. 2022. Fabrication of g-C3N4/Sn3O4/Ni electrode for highly efficient photoelectrocatalytic reduction of U(VI). Chemical Engineering Journal 433:133766

doi: 10.1016/j.cej.2021.133766
[86]

Zhang Q, Xie C, Wang J, Zeng Q, Zhang Y, et al. 2025. Synergistic and sustainable treatment of uranium-containing wastewater by the photoelectrochemical system with an oxygen-vacancy enriched cobalt oxide cathode. Chemical Engineering Journal 514:163253

doi: 10.1016/j.cej.2025.163253
[87]

Wu J, Wang J, Qi Y, Zhang Z, Li Y, et al. 2025. Self-reinforcing extraction of uranium(VI) from wastewater via uranium-incorporated hematite photoelectrochemical system. Journal of Hazardous Materials 494:138614

doi: 10.1016/j.jhazmat.2025.138614
[88]

Wang Y, Zeng Q, Ji H, Wang R, Wang J, et al. 2025. Self-supportive three-way photoelectrochemical system achieving uranium recycling, organic oxidation, and electricity generation in complex waters. Advanced Functional Materials 00:2503925

doi: 10.1002/adfm.202503925
[89]

Fu X, Song L, Wu Y, Zhang Q, Wang R, et al. 2025. Highly efficient treatment of complex uranium-organic wastewater via a self-driven photoelectrochemical system with TNR/Si PVC photoanode and nickel foam cathode. Sustainable Materials and Technologies 43:e01251

doi: 10.1016/j.susmat.2025.e01251
[90]

Li J, Hu Y, Shen Z, Jin H, He R, et al. 2025. Efficient uranium(VI) recovery from fluorinated wastewater via deferiprone ligand complexation. Water Research 271:122884

doi: 10.1016/j.watres.2024.122884
[91]

Ohashi Y, Ikeda Y. 2019. Studies on processes for recovering uranium from sediment wastes. Journal of Radioanalytical and Nuclear Chemistry 321:683−691

doi: 10.1007/s10967-019-06614-6
[92]

Lei J, Shen Y, Wang X, Chen L, Xu J, et al. 2024. Record high uranium photoassisted capture performance from fluorine-containing wastewater by Ag/WO3–x with surface defect and heterostructure. Inorganic Chemistry 63:19439−19449

doi: 10.1021/acs.inorgchem.4c03394
[93]

Zhou L, Lian J, Li Q, Li J, Shao Y, et al. 2023. Unveiling the critical role of surface hydroxyl groups for electro-assisted uranium extraction from wastewater. Inorganic Chemistry 62:21518−21527

doi: 10.1021/acs.inorgchem.3c03967
[94]

Lin T, Chen T, Jiao C, Zhang H, Hou K, et al. 2024. Ion pair sites for efficient electrochemical extraction of uranium in real nuclear wastewater. Nature Communications 15:4149

doi: 10.1038/s41467-024-48564-y
[95]

Li S, Zhao L, Wang S, Li C, Cai L, et al. 2024. Covalently anchoring phosphorus nitride imide on carbon nanotubes for efficient electrochemical extraction of uranium. Chemical Engineering Journal 499:156076

doi: 10.1016/j.cej.2024.156076
[96]

Pan M, Cui C, Tang W, Guo Z, Zhang D, et al. 2022. Carbon cloth as an important electrode support for the high selective electrosorption of uranium from acidic uranium mine wastewater. Separation and Purification Technology 281:119843

doi: 10.1016/j.seppur.2021.119843
[97]

Guo D, Yan C, Huang B, Jin T, Liu Z, et al. 2025. Combining electrosorption and electrochemical reduction mechanisms for uranium removal using 1,2,3,4-butane tetracarboxylic acid-modified MIL-101: an in-depth exploration of uranyl-adsorbent interactions. Inorganic Chemistry 64:1777−1787

doi: 10.1021/acs.inorgchem.4c04304
[98]

Guo D, Yan C, Zhu Y, Huang B, Qian Y, et al. 2025. Phytic acid-induced amorphous and porous transformation of MnO2@GO with enhanced capacitive performance for efficient uranium removal via capacitive deionization. Journal of Environmental Chemical Engineering 13:116672

doi: 10.1016/j.jece.2025.116672
[99]

Ye Y, Fan B, Qin Z, Tang X, Feng Y, et al. 2022. Electrochemical removal and recovery of uranium: effects of operation conditions, mechanisms, and implications. Journal of Hazardous Materials 432:128723

doi: 10.1016/j.jhazmat.2022.128723
[100]

Gao W, Long Y, Qing Y, Xu C. 2024. A novel strategy for efficient uranium extraction and energy storage: uranium extraction cell. Separation and Purification Technology 339:126723

doi: 10.1016/j.seppur.2024.126723
[101]

Wang Z, Ma R, Meng Q, Yang Y, Ma X, et al. 2021. Constructing uranyl-specific nanofluidic channels for unipolar ionic transport to realize ultrafast uranium extraction. Journal of the American Chemical Society 143:14523−14529

doi: 10.1021/jacs.1c02592
[102]

Zhang D, Fang L, Liu L, Zhao B, Hu B, et al. 2023. Uranium extraction from seawater by novel materials: a review. Separation and Purification Technology 320:124204

doi: 10.1016/j.seppur.2023.124204
[103]

Wang Z, Meng Q, Ma R, Wang Z, Yang Y, et al. 2020. Constructing an ion pathway for uranium extraction from seawater. Chem 6:1683−1691

doi: 10.1016/j.chempr.2020.04.012
[104]

Tian J, Li N, Luo Y, Xing H, Su R, et al. 2025. Construction of a graphene/cellulose aerogel embedded with UiO-66-CN for highly efficient uranium capture via electro-adsorption. Journal of Materials Chemistry A 13:6597−6606

doi: 10.1039/D4TA07988D
[105]

Zhang C, Wang Z, Ma R, Cao J, Ruan X, et al. 2025. Overcoming chemical dissociation processes: electrochemical modulation of high-affinity binding sites for rapid uranium extraction from seawater. Advanced Functional Materials 35:2412712

doi: 10.1002/adfm.202412712
[106]

Tang X, Liu Y, Liu M, Chen H, Huang P, et al. 2022. Sulfur edge in molybdenum disulfide nanosheets achieves efficient uranium binding and electrocatalytic extraction in seawater. Nanoscale 14:6285−6290

doi: 10.1039/D2NR01000C
[107]

Guo H, Hu E, Wang Y, Ou Z, Huang B, et al. 2025. A synergistic coordination-reduction interface for electrochemical reductive extraction of uranium with low impurities from seawater. Nature Communications 16:2012

doi: 10.1038/s41467-025-57113-0
[108]

Li J, Jiao C, Lin Y, Li Y, Qian Z, et al. 2024. Layered charge separation in surface boron doped copper with phosphate groups boosts the electrochemical uranium extraction from seawater. Applied Catalysis B: Environment and Energy 347:123770

doi: 10.1016/j.apcatb.2024.123770