[1]

Sun SH, Wan J, Fu HC, Sun YH, Shao F, et al. 2026. Influence of pyrolysis on biomass structure: microscopic deformation patterns and chemical composition variations. Fuel 403:136090

doi: 10.1016/j.fuel.2025.136090
[2]

Kale RD, Lenka M, Rao CS. 2025. Leveraging explainable AI framework for predictive modeling of products of microwave pyrolysis of lignocellulosic biomass using machine learning. Journal of Analytical and Applied Pyrolysis 192:107249

doi: 10.1016/j.jaap.2025.107249
[3]

Alizad Oghyanous F, Eskicioglu C. 2025. Hydrothermal liquefaction vs. fast/flash pyrolysis for biomass-to-biofuel conversion: new insights and comparative review of liquid biofuel yield, composition, and properties. Green Chemistry 27:7009−7041

doi: 10.1039/D5GC01314C
[4]

Zhang C, Liu N, Zhang T, Su S, Li R, et al. 2025. Influence of biomass type and pyrolysis temperature on biochar characteristics for enhanced soil amendment. Journal of Analytical and Applied Pyrolysis 192:107257

doi: 10.1016/j.jaap.2025.107257
[5]

Li P, Chen Y, Lin Y, Chen W, Hu J, et al. 2025. Research progress on the preparation of high-value carbon materials by biomass pyrolysis. Biomass and Bioenergy 193:107520

doi: 10.1016/j.biombioe.2024.107520
[6]

Rodto K, Serafin J, Chaemchuen S, Klomkliang N. 2025. Integrated valorization of oil palm waste via CO2-assisted slow pyrolysis: enhanced biochar, tailored bio-oil, and economic viability. Biomass and Bioenergy 201:108108

doi: 10.1016/j.biombioe.2025.108108
[7]

Tian H, Zhang H, Huang Z, Guo X, Cheng S, et al. 2024. Balancing bio-oil quality and yield during rapid pyrolysis of Miscanthus using ZSM-5 and metal oxides. Biomass and Bioenergy 190:107423

doi: 10.1016/j.biombioe.2024.107423
[8]

Nunes LA, Silva MLS, Gerber JZ, Kalid RdA. 2020. Waste green coconut shells: diagnosis of the disposal and applications for use in other products. Journal of Cleaner Production 255:120169

doi: 10.1016/j.jclepro.2020.120169
[9]

Timell TE. 1957. Vegetable ivory as a source of a mannan polysaccharide. Canadian Journal of Chemistry 35:333−338

doi: 10.1139/v57-048
[10]

Chae DY, Kim JK, Park KB, Kim JS. 2025. Thermal, thermo-oxidative, and catalytic degradation of palm kernel shells using a continuous two-stage pyrolysis process for the production of phenols-rich bio-oil. Fuel 385:134103

doi: 10.1016/j.fuel.2024.134103
[11]

Shukor H, Abdeshahian P, Al-Shorgani NKN, Hamid AA, Rahman NA, et al. 2016. Enhanced mannan-derived fermentable sugars of palm kernel cake by mannanase-catalyzed hydrolysis for production of biobutanol. Bioresource Technology 218:257−264

doi: 10.1016/j.biortech.2016.06.084
[12]

Ghysels S, Estrada Léon AE, Pala M, Schoder KA, Van Acker J, et al. 2019. Fast pyrolysis of mannan-rich ivory nut (Phytelephas aequatorialis) to valuable biorefinery products. Chemical Engineering Journal 373:446−457

doi: 10.1016/j.cej.2019.05.042
[13]

Ghysels S, Estrada A, Vanderhaeghen L, Rousseau D, Dumoulin A, et al. 2023. Levoglucosenone, furfural and levomannosan from mannan-rich feedstock: a proof-of-principle with ivory nut. Chemical Engineering Journal 451:138486

doi: 10.1016/j.cej.2022.138486
[14]

Sangthong S, Phetwarotai W, Bakar MSA, Cheirsilp B, Phusunti N. 2022. Phenol-rich bio-oil from pyrolysis of palm kernel shell and its isolated lignin. Industrial Crops and Products 188:115648

doi: 10.1016/j.indcrop.2022.115648
[15]

Hindrichsen IK, Kreuzer M, Madsen J, Knudsen KEB. 2006. Fiber and lignin analysis in concentrate, forage, and feces: detergent versus enzymatic-chemical method. Journal of Dairy Science 89:2168−2176

doi: 10.3168/jds.S0022-0302(06)72287-1
[16]

Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74:3583−3597

doi: 10.3168/jds.S0022-0302(91)78551-2
[17]

Goulding DA, Fox PF, O'Mahony JA. 2020. Chapter 2 − Milk proteins: an overview. In Milk Proteins: From Expression to Food, third edition. eds. Boland M, Singh H. USA: Academic Press. pp. 21−98 doi: 10.1016/B978-0-12-815251-5.00002-5

[18]

Zhao F, Qian J, Liu H, Wang C, Wang X, et al. 2022. Quantification, identification and comparison of oligopeptides on five tea categories with different fermentation degree by Kjeldahl method and ultra-high performance liquid chromatography coupled with quadrupole-orbitrap ultra-high resolution mass spectrometry. Food Chemistry 378:132130

doi: 10.1016/j.foodchem.2022.132130
[19]

Tran HD, Tu Nguyen NT, Phuong TT, Nguyen QH, Dang VH. 2025. Soxhlet extraction of Momordica cochinchinensis fruit peel for β-carotene recovery. RSC Advances 15:6764−6773

doi: 10.1039/D4RA08999E
[20]

Chen J, Bai Z, Zheng H, Li W, Zhang T, et al. 2024. Study on the characteristics and role of the soluble fractions during direct liquefaction for two low rank coals. Part I: Structural comparison between the soluble fractions obtained from soxhlet and thermal extraction. Fuel 371:131931

doi: 10.1016/j.fuel.2024.131931
[21]

Li K, Wang B, Bolatibieke D, Nan DH, Zhang ZX, et al. 2020. Catalytic fast pyrolysis of biomass with Ni-P-MCM-41 to selectively produce levoglucosenone. Journal of Analytical and Applied Pyrolysis 148:104824

doi: 10.1016/j.jaap.2020.104824
[22]

Liu J, Fu H, Hu B, Zhou GZ, Wei SG, et al. 2024. Towards the production of 1,4:3,6-dianhydro-α-ᴅ-glucopyranose from biomass fast pyrolysis based on oxalic acid-assisted torrefaction pretreatment. Journal of Analytical and Applied Pyrolysis 182:106702

doi: 10.1016/j.jaap.2024.106702
[23]

Toscano Miranda N, Lopes Motta I, Maciel Filho R, Wolf Maciel MR. 2021. Sugarcane bagasse pyrolysis: a review of operating conditions and products properties. Renewable and Sustainable Energy Reviews 149:111394

doi: 10.1016/j.rser.2021.111394
[24]

Jerzak W, Wądrzyk M, Kalemba-Rec I, Bieniek A, Magdziarz A. 2023. Release of chlorine during oat straw pyrolysis doped with char and ammonium chloride. Renewable Energy 215:118923

doi: 10.1016/j.renene.2023.118923
[25]

Sun H, Feng D, Sun S, Zhao Y, Zhang L, et al. 2022. Effect of acid washing and K/Ca loading on corn straw with the characteristics of gas-solid products during its pyrolysis. Biomass and Bioenergy 165:106569

doi: 10.1016/j.biombioe.2022.106569
[26]

Hori R, Sugiyama J, Wada M. 2007. The thermal expansion of mannan I obtained from ivory nuts. Carbohydrate Polymers 70:298−303

doi: 10.1016/j.carbpol.2007.04.011
[27]

El-Sayed SA. 2025. Chemical products yielded from different pyrolysis processes of rice waste residues: a comprehensive review. Biomass Conversion and Biorefinery 15:20615−20655

doi: 10.1007/s13399-025-06624-3
[28]

Espinheira RP, Barrett K, Lange L, Sant'Ana da Silva A, Meyer AS. 2025. Discovery and characterization of mannan-specialized GH5 endo-1,4-β-mannanases: a strategy for açaí (Euterpe oleracea Mart.) seeds upgrading. Journal of Agricultural and Food Chemistry 73:625−634

doi: 10.1021/acs.jafc.4c07018
[29]

Venderbosch RH, Prins W. 2010. Fast pyrolysis technology development. Biofuels, Bioproducts and Biorefining 4:178−208

doi: 10.1002/bbb.205
[30]

Yang H, Yan R, Chen H, Lee DH, Zheng C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781−1788

doi: 10.1016/j.fuel.2006.12.013
[31]

Ma Z, Sun Q, Ye J, Yao Q, Zhao C. 2016. Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA-FTIR and Py-GC/MS. Journal of Analytical and Applied Pyrolysis 117:116−124

doi: 10.1016/j.jaap.2015.12.007
[32]

Zhao J, Wang X, Hu J, Liu Q, Shen D, et al. 2014. Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polymer Degradation and Stability 108:133−138

doi: 10.1016/j.polymdegradstab.2014.06.006
[33]

Lv X, Li Q, Jiang Z, Wang Y, Li J, et al. 2018. Structure characterization and pyrolysis behavior of organosolv lignin isolated from corncob residue. Journal of Analytical and Applied Pyrolysis 136:115−124

doi: 10.1016/j.jaap.2018.10.016
[34]

Muzyka R, Chrubasik M, Dudziak M, Ouadi M, Sajdak M. 2022. Pyrolysis of tobacco waste: a comparative study between Py-GC/MS and fixed-bed reactors. Journal of Analytical and Applied Pyrolysis 167:105702

doi: 10.1016/j.jaap.2022.105702
[35]

Hu B, Zhang B, Xie WL, Jiang XY, Liu J, et al. 2020. Recent progress in quantum chemistry modeling on the pyrolysis mechanisms of lignocellulosic biomass. Energy & Fuels 34:10384−10440

doi: 10.1021/acs.energyfuels.0c01948