[1]

Fang J, Chen B, Wang F, Li W, Zhang H, et al. 2024. Nitrogen, phosphorus, and potassium co-limitation in terrestrial ecosystems: a global meta-analysis. Plants, People, Planet 6:1329−1340

doi: 10.1002/ppp3.10524
[2]

Coskun D, Britto DT, Shi W, Kronzucker HJ. 2017. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants 3:17074

doi: 10.1038/nplants.2017.74
[3]

Kuzyakov Y, Xu X. 2013. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist 198:656−669

doi: 10.1111/nph.12235
[4]

L'Espérance E, Bouyoucef LS, Dozois JA, Yergeau E. 2024. Tipping the plant-microbe competition for nitrogen in agricultural soils. iScience 27:110973

doi: 10.1016/j.isci.2024.110973
[5]

Liu M, Xu X, Nannipieri P, Kuzyakov Y, Gunina A. 2021. Diurnal dynamics can modify plant–microbial competition for N uptake via C allocation. Biology and Fertility of Soils 57:949−958

doi: 10.1007/s00374-021-01585-x
[6]

Moreau D, Pivato B, Bru D, Busset H, Deau F, et al. 2015. Plant traits related to nitrogen uptake influence plant-microbe competition. Ecology 96:2300−2310

doi: 10.1890/14-1761.1
[7]

Du Z, Zhou L, Thakur MP, Zhou G, Fu Y, et al. 2024. Mycorrhizal associations relate to stable convergence in plant-microbial competition for nitrogen absorption under high nitrogen conditions. Global Change Biology 30:e17338

doi: 10.1111/gcb.17338
[8]

Reay MK, Marsden KA, Powell S, Chadwick DR, Jones DL, et al. 2023. Combining field and laboratory approaches to quantify N assimilation in a soil microbe-plant-animal grazing land system. Agriculture, Ecosystems & Environment 346:108338

doi: 10.1016/j.agee.2022.108338
[9]

Hodge A, Robinson D, Fitter A. 2000. Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science 5:304−308

doi: 10.1016/S1360-1385(00)01656-3
[10]

Harrison KA, Bol R, Bardgett RD. 2008. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil Biology and Biochemistry 40:228−237

doi: 10.1016/j.soilbio.2007.08.004
[11]

Williams MA, Rice CW, Owensby CE. 2001. Nitrogen competition in a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Soil Science Society of America Journal 65:340−346

doi: 10.2136/sssaj2001.652340x
[12]

Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103:626−631

doi: 10.1073/pnas.0507535103
[13]

Zhou M, Bai W, Li Q, Guo Y, Zhang WH. 2021. Root anatomical traits determined leaf-level physiology and responses to precipitation change of herbaceous species in a temperate steppe. New Phytologist 229:1481−1491

doi: 10.1111/nph.16797
[14]

Houlton BZ, Sigman DM, Schuur EAG, Hedin LO. 2007. A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proceedings of the National Academy of Sciences of the United States of America 104:8902−8906

doi: 10.1073/pnas.0609935104
[15]

Zhou X, Wang A, Hobbie EA, Zhu F, Qu Y, et al. 2021. Mature conifers assimilate nitrate as efficiently as ammonium from soils in four forest plantations. New Phytologist 229:3184−3194

doi: 10.1111/nph.17110
[16]

McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, et al. 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68−71

doi: 10.1038/415068a
[17]

Lan T, Li M, He X, Deng O, Zhou W, et al. 2022. Effects of synthetic nitrification inhibitor (3,4-dimethylpyrazole phosphate; DMPP) and biological nitrification inhibitor (methyl 3-(4-hydroxyphenyl) propionate; MHPP) on the gross N nitrification rate and ammonia oxidizers in two contrasting soils. Biology and Fertility of Soils 58:333−344

doi: 10.1007/s00374-022-01628-x
[18]

Zhang J, Zhu T, Cai Z, Müller C. 2011. Nitrogen cycling in forest soils across climate gradients in Eastern China. Plant and Soil 342:419−432

doi: 10.1007/s11104-010-0706-6
[19]

Zhao W, Cai ZC, Xu ZH. 2007. Does ammonium-based N addition influence nitrification and acidification in humid subtropical soils of China? Plant and Soil 297:213−221

doi: 10.1007/s11104-007-9334-1
[20]

Robert CAM, Himmighofen P, McLaughlin S, Cofer TM, Khan SA, et al. 2025. Environmental and biological drivers of root exudation. Annual Review of Plant Biology 76:317−339

doi: 10.1146/annurev-arplant-083123-082752
[21]

Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, et al. 1999. Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Functional Ecology 13:650−660

doi: 10.1046/j.1365-2435.1999.00362.x
[22]

Innes L, Hobbs PJ, Bardgett RD. 2004. The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility. Biology and Fertility of Soils 40:7−13

doi: 10.1007/s00374-004-0748-0
[23]

Pantigoso HA, Newberger D, Vivanco JM. 2022. The rhizosphere microbiome: plant–microbial interactions for resource acquisition. Journal of Applied Microbiology 133:2864−2876

doi: 10.1111/jam.15686
[24]

Månsson K, Bengtson P, Falkengren-Grerup U, Bengtsson G. 2009. Plant–microbial competition for nitrogen uncoupled from soil C:N ratios. Oikos 118:1908−1916

doi: 10.1111/j.1600-0706.2009.17796.x
[25]

Priha O, Smolander A. 2003. Short-term uptake of 15NH4+ into soil microbes and seedlings of pine, spruce and birch in potted soils. Biology and Fertility of Soils 37:324−327

doi: 10.1007/s00374-003-0601-x
[26]

Zhang J, Cai Z, Müller C. 2018. Terrestrial N cycling associated with climate and plant-specific N preferences: a review. European Journal of Soil Science 69:488−501

doi: 10.1111/ejss.12533
[27]

Mao J, Wang J, Liao J, Xu X, Tian D, et al. 2025. Plant nitrogen uptake preference and drivers in natural ecosystems at the global scale. New Phytologist 246:972−983

doi: 10.1111/nph.70030
[28]

He X, Chi Q, Zhao C, Cheng Y, Huang X, et al. 2021. Plants with an ammonium preference affect soil N transformations to optimize their N acquisition. Soil Biology and Biochemistry 155:108158

doi: 10.1016/j.soilbio.2021.108158
[29]

Zhang J, Wang J, Müller C, Cai Z. 2016. Ecological and practical significances of crop species preferential N uptake matching with soil N dynamics. Soil Biology and Biochemistry 103:63−70

doi: 10.1016/j.soilbio.2016.08.009
[30]

Anderson DS, Teyker RH, Rayburn AL. 1991. Nitrogen form effects on early corn root morphological and anatomical development. Journal of Plant Nutrition 14:1255−1266

doi: 10.1080/01904169109364282
[31]

Zhao C, He X, Dan X, Zhao J, Huang X, et al. 2021. Specific dissolved organic matter components drive the assembly of a core microbial community in acidic soil of ammonium-preferring plants. CATENA 207:105584

doi: 10.1016/j.catena.2021.105584
[32]

Liu S, Chi Q, Cheng Y, Zhu B, Li W, et al. 2019. Importance of matching soil N transformations, crop N form preference, and climate to enhance crop yield and reducing N loss. Science of The Total Environment 657:1265−1273

doi: 10.1016/j.scitotenv.2018.12.100
[33]

Brookes PC, Landman A, Pruden G, Jenkinson DS. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry 17:837−842

doi: 10.1016/0038-0717(85)90144-0
[34]

Kirkham D, Bartholomew WV. 1954. Equations for following nutrient transformations in soil, utilizing tracer data. Soil Science Society of America Journal 18:33−34

doi: 10.2136/sssaj1954.03615995001800010009x
[35]

Vázquez E, Teutscherova N, Dannenmann M, Töchterle P, Butterbach-Bahl K, et al. 2020. Gross nitrogen transformations in tropical pasture soils as affected by Urochloa genotypes differing in biological nitrification inhibition (BNI) capacity. Soil Biology and Biochemistry 151:108058

doi: 10.1016/j.soilbio.2020.108058
[36]

Inselsbacher E, Hinko-Najera Umana N, Stange FC, Gorfer M, Schüller E, et al. 2010. Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biology and Biochemistry 42:360−372

doi: 10.1016/j.soilbio.2009.11.019
[37]

Wang L, Macko SA. 2011. Constrained preferences in nitrogen uptake across plant species and environments. Plant, Cell & Environment 34:525−534

doi: 10.1111/j.1365-3040.2010.02260.x
[38]

Wallander H, Arnebrant K, Östrand F, Kårén O. 1997. Uptake of 15N-labelled alanine, ammonium and nitrate in Pinus sylvestris L. ectomycorrhiza growing in forest soil treated with nitrogen, sulphur or lime. Plant and Soil 195:329−338

doi: 10.1023/A:1004280401423
[39]

Crawford DM, Chalk PM. 1993. Sources of N uptake by wheat (Triticum aestivum L.) and N transformations in soil treated with a nitrification inhibitor (nitrapyrin). Plant and Soil 149:59−72

doi: 10.1007/BF00010763
[40]

Andersen KM, Turner BL. 2013. Preferences or plasticity in nitrogen acquisition by understorey palms in a tropical montane forest. Journal of Ecology 101:819−825

doi: 10.1111/1365-2745.12070
[41]

Cui J, Yu C, Qiao N, Xu X, Tian Y, et al. 2017. Plant preference for NH4+ versus NO3 at different growth stages in an alpine agroecosystem. Field Crops Research 201:192−199

doi: 10.1016/j.fcr.2016.11.009
[42]

Ashton IW, Miller AE, Bowman WD, Suding KN. 2010. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91:3252−3260

doi: 10.1890/09-1849.1
[43]

Weng Z, Butterly CR, Sale P, Li G, Tang C. 2021. Combined nitrate and phosphorus application promotes rhizosphere alkalization and nitrogen uptake by wheat but not canola in acid subsoils. Journal of Soils and Sediments 21:2995−3006

doi: 10.1007/s11368-021-03000-2
[44]

Yu C, Liu M, Song M, Xu X, Zong N, et al. 2023. Nitrogen enrichment enhances the competition for nitrogen uptake between Stipa purpurea and microorganisms in a tibetan alpine steppe. Plant and Soil 488:503−516

doi: 10.1007/s11104-023-05989-6
[45]

Britto DT, Kronzucker HJ. 2002. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology 159:567−584

doi: 10.1078/0176-1617-0774
[46]

Hachiya T, Watanabe CK, Fujimoto M, Ishikawa T, Takahara K, et al. 2012. Nitrate addition alleviates ammonium toxicity without lessening ammonium accumulation, organic acid depletion and inorganic cation depletion in Arabidopsis thaliana shoots. Plant and Cell Physiology 53:577−591

doi: 10.1093/pcp/pcs012
[47]

Chalk P, Smith C. 2020. On inorganic N uptake by vascular plants: can 15N tracer techniques resolve the NH4+ versus NO3 "preference" conundrum? European Journal of Soil Science 72:1762−1779

doi: 10.1111/ejss.13069
[48]

Geens EL, Davies GP, Maggs JM, Barraclough D. 1991. The use of mean pool abundances to interpret 15N tracer experiments. Plant and Soil 131:97−105

doi: 10.1007/BF00010424
[49]

He X, Chi Q, Cai Z, Cheng Y, Zhang J, et al. 2020. 15N tracing studies including plant N uptake processes provide new insights on gross N transformations in soil-plant systems. Soil Biology and Biochemistry 141:107666

doi: 10.1016/j.soilbio.2019.107666
[50]

Xu X, Ouyang H, Richter A, Wanek W, Cao G, et al. 2011. Spatio-temporal variations determine plant–microbe competition for inorganic nitrogen in an alpine meadow. Journal of Ecology 99:563−571

doi: 10.1111/j.1365-2745.2010.01789.x
[51]

Rosswall T. 1982. Microbiological regulation of the biogeochemical nitrogen cycle. Plant and Soil 67:15−34

doi: 10.1007/BF02182752
[52]

Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591−602

doi: 10.1890/03-8002
[53]

Wu H, Dannenmann M, Fanselow N, Wolf B, Yao Z, et al. 2011. Feedback of grazing on gross rates of N mineralization and inorganic N partitioning in steppe soils of Inner Mongolia. Plant and Soil 340:127−139

doi: 10.1007/s11104-010-0575-z
[54]

Kemmitt SJ, Wright D, Goulding KWT, Jones DL. 2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry 38:898−911

doi: 10.1016/j.soilbio.2005.08.006
[55]

Aciego Pietri JC, Brookes PC. 2008. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biology and Biochemistry 40:1856−1861

doi: 10.1016/j.soilbio.2008.03.020
[56]

Liu M, Yu C, Zhu T, Xu X, Wang Y. 2022. Restoration of degraded alpine grasslands alters plant–microbial competition for nitrogen. Biology and Fertility of Soils 58:803−814

doi: 10.1007/s00374-022-01660-x