[1]

Tothill JC, Hacker JB. 1983. The grasses of southern Queensland. St. Lucia, New York: University of Queensland Press. pp. 300−475 www.cabidigitallibrary.org/doi/full/10.5555/19870704472

[2]

Anderson S. 2000. Taxonomy of Zoysia (Poaceae): Morphological and molecular variation. PhD dissertation. Texas A&M University, College Station, Texas, USA. pp. 117−143 www.proquest.com/docview/304664290?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses

[3]

Christians NE, Engelke MC. 1994. Choosing the right grass to fit the environment. In Handbook of Integrated Pest Management for Turfgrass and Ornamentals, ed. Lesley AR. 1st Edition. London: CRC Press. pp. 99−112 doi: 10.1201/9780138752798-13

[4]

Gouveia BT, Kenworthy KE, Schwartz B, Zhang J, Austin R, et al. 2025. Multi-location testing increases genetic gains for drought tolerance in zoysiagrass. International Turfgrass Society Research Journal 15:1271−1280

doi: 10.1002/its2.70110
[5]

Patton AJ, Schwartz BM, Kenworthy KE. 2017. Zoysiagrass (Zoysia spp.) history, utilization, and improvement in the United States: a review. Crop Science 57:S37−S72

doi: 10.2135/cropsci2017.02.0074
[6]

Steinke K, Chalmers D, Thomas J, White R, Fipps, G. 2010. Drought responses and recovery characteristics of St. Augustinegrass cultivars. Crop Science 50:2076−2083

doi: 10.2135/cropsci2009.10.0635
[7]

Gouveia BT, Kenworthy KE, Chandra A, Schwartz BM, Zhang J, et al. 2025. Enhancing drought resistance in warm‐season turfgrasses: fourteen years of progress through a multistate collaborative project across the southern United States. Crop Science 65:e221393

doi: 10.1002/csc2.21393
[8]

Milla-Lewis SR, Gouveia BT, Carbajal EM, Miller GL, Patton AJ, et al. 2025. Registration of 'XZ 14069' zoysiagrass. Journal of Plant Registrations 19:e20430

doi: 10.1002/plr2.20430
[9]

Vines P, Gouveia BT, Chandra A, Chavarria MR, Fontanier CH, et al. 2025. Performance of bermudagrass, seashore paspalum, St. Augustinegrass, and zoysiagrass advanced breeding lines in response to shade. International Turfgrass Society Research Journal 15:1026−1042

doi: 10.1002/its2.70091
[10]

Guo H, Ding W, Chen J, Chen X, Zheng Y, et al. 2014. Genetic linkage map construction and QTL mapping of salt tolerance traits in zoysiagrass (Zoysia japonica). PLoS One 9:e107249

doi: 10.1371/journal.pone.0107249
[11]

Harris-Shultz KR, Milla-Lewis S, Patton AJ, Kenworthy K, Chandra A, et al. 2014. Detection of DNA and ploidy variation within vegetatively propagated zoysiagrass cultivars. Journal of the American Society for Horticultural Science 139:547−552

doi: 10.21273/jashs.139.5.547
[12]

Tanaka H, Tokunaga R, Muguerza M, Kitazaki Y, Hashiguchi M, et al. 2016. Genetic structure and speciation of zoysiagrass ecotypes collected in Japan. Crop Science 56:818−826

doi: 10.2135/cropsci2015.04.0249
[13]

Beard JB. 1998. Turfgrass: Science and Culture. Upper Saddle River: Prentice Hall. pp. 132−165 https://archive.org/details/turfgrassscience0000bear/page/n7/mode/2up

[14]

Vasil IK. 2008. A history of plant biotechnology: from the Cell Theory of Schleiden and Schwann to biotech crops. Plant Cell Reports 27:1423−1440

doi: 10.1007/s00299-008-0571-4
[15]

Newell-McGloughlin M. 2008. Nutritionally improved agricultural crops. Plant Physiology 147:939−953

doi: 10.1104/pp.108.121947
[16]

Chen K, Wang Y, Zhang R, Zhang H, Gao C. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70:667−697

doi: 10.1146/annurev-arplant-050718-100049
[17]

Ricroch A, Clairand P, Harwood W. 2017. Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerging Topics in Life Sciences 1:169−182

doi: 10.1042/ETLS20170085
[18]

Liu J, Nannas NJ, Fu FF, Shi J, Aspinwall B, et al. 2019. Genome-scale sequence disruption following biolistic transformation in rice and maize. The Plant Cell 31:368−383

doi: 10.1105/tpc.18.00613
[19]

Muguerza MB, Gondo T, Ishigaki G, Shimamoto Y, Umami N, et al. 2022. Tissue culture and somatic embryogenesis in warm-season grasses—current status and its applications: a review. Plants 11:1263

doi: 10.3390/plants11091263
[20]

Bhatia S, Sharma K. 2015. Micropropagation. In Modern Application of Plant Biotechnology in Pharmaceutical Sciences, eds. Bhatia S, Sharma K, Dahiya R, Bera T. Amsterdam: Elsevier. pp. 361−368 doi: 10.1016/b978-0-12-802221-4.00011-x

[21]

Al-Khayri JM, Huang FH, Thompson LF, King JW. 1989. Plant regeneration of zoysiagrass from embryo-derived callus. Crop Science 29:1324−1325

doi: 10.2135/cropsci1989.0011183X002900050047x
[22]

Asano Y. 1989. Somatic embryogenesis and protoplast culture in Japanese lawngrass (Zoysia japonica). Plant Cell Reports 8:141−143

doi: 10.1007/BF00716826
[23]

Inokuma C, Sugiura K, Cho C, Okawara R, Kaneko S. 1996. Plant regeneration from protoplasts of Japanese lawngrass. Plant Cell Reports 15:737−741

doi: 10.1007/BF00232218
[24]

Asano Y, Katsumoto H, Inokuma C, Kaneko S, Ito Y, et al. 1996. Cytokinin and thiamine requirements and stimulative effects of riboflavin and α-ketoglutaric acid on embryogenic callus induction from the seeds of Zoysia japonica steud. Journal of Plant Physiology 149:413−417

doi: 10.1016/S0176-1617(96)80142-8
[25]

Liu L, Fan X, Zhang J, Yan M, Bao M. 2009. Long-term cultured callus and the effect factor of high-frequency plantlet regeneration and somatic embryogenesis maintenance in Zoysia japonica. In Vitro Cellular & Developmental Biology - Plant 45:673−680

doi: 10.1007/s11627-009-9226-6
[26]

Wang X, Hoshino Y, Yamada T. 2010. Rapid and efficient callus induction and plant regeneration from seeds of zoysiagrass (Zoysia japonica Steud.). Grassland Science 56:198−204

doi: 10.1111/j.1744-697X.2010.00195.x
[27]

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15:473−497

doi: 10.1111/j.1399-3054.1962.tb08052.x
[28]

Li R, Bruneau AH, Qu R. 2006. Improved plant regeneration and in vitro somatic embryogenesis of St Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze]. Plant Breeding 125:52−56

doi: 10.1111/j.1439-0523.2006.01193.x
[29]

Li R, Bruneau AH, Qu R. 2010. Tissue culture-induced morphological somaclonal variation in St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze]. Plant Breed 129:96−99

doi: 10.1111/j.1439-0523.2009.01647.x
[30]

Xu X, Liu W, Liu X, Cao Y, Li X, et al. 2022. Genetic manipulation of bermudagrass photosynthetic biosynthesis using Agrobacterium-mediated transformation. Physiologia Plantarum 174:e13710

doi: 10.1111/ppl.13710
[31]

Zhong H, Srinivasan C, Sticklen MB. 1991. Plant regeneration via somatic embryogenesis in creeping bentgrass (Agrostis palustris Huds.). Plant Cell Reports 10:453−456

doi: 10.1007/BF00233813
[32]

Chai ML, Lee JM, Kim DH. 1998. High efficiency of plant regeneration from seed-derived callus of zoysiagrass cv. Zenith. Korean Journal of Turfgrass Science 12:195−202

[33]

Griffin JD, Dibble MS. 1995. High-frequency plant regeneration from seed-derived callus cultures of Kentucky bluegrass (Poa pratensis L.). Plant Cell Reports 14:721−724

doi: 10.1007/BF00232655
[34]

Chai M, Jia Y, Chen S, Gao Z, Wang H, et al. 2011. Callus induction, plant regeneration, and long-term maintenance of embryogenic cultures in Zoysia matrella [L.] Merr. Plant Cell, Tissue and Organ Culture (PCTOC) 104:187−192

doi: 10.1007/s11240-010-9817-2
[35]

Ikeuchi M, Sugimoto K, Iwase A. 2013. Plant callus: mechanisms of induction and repression. The Plant Cell 25:3159−3173

doi: 10.1105/tpc.113.116053
[36]

George EF, Hall MA, De Klerk GJ. 2008. Plant growth regulators I: introduction; auxins, their analogues and inhibitors. In Plant Propagation by Tissue Culture,eds. George EF, Hall MA, De Klerk GJ. Dordrecht: Springer Netherlands. pp. 175−204 doi: 10.1007/978-1-4020-5005-3_5

[37]

George EF, Hall MA, De Klerk GJ. 2008. Plant tissue culture procedure-Background. In Plant Propagation by Tissue Culture, eds. George EF, Hall MA, Klerk GJ. Dordrecht: Springer Netherlands. pp. 1−28 doi: 10.1007/978-1-4020-5005-3_1

[38]

Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. 2023. Auxin and abiotic stress responses. Journal of Experimental Botany 74:7000−7014

doi: 10.1093/jxb/erad325
[39]

Müller B. 2011. Generic signal-specific responses: cytokinin and context-dependent cellular responses. Journal of Experimental Botany 62:3273−3288

doi: 10.1093/jxb/erq420
[40]

Schaller GE, Bishopp A, Kieber JJ. 2015. The Yin-Yang of hormones: cytokinin and auxin interactions in plant development. The Plant Cell 27:44−63

doi: 10.1105/tpc.114.133595
[41]

Motte H, Werbrouck S, Geelen D. 2013. In vitro propagation. In Plant Chemical Biology, eds. Audenaert D, Overvoorde P. Hoboken, New Jersey, USA: John Wiley & Sons. pp. 263−287 doi: 10.1002/9781118742921.ch7.2

[42]

Wang L, Xiao K, Li Y, Zi Z, Sun Y, et al. 2024. Transcriptional regulation and hormone action analysis in the regeneration process of Zoysia japonica after mowing. Grass Research 4:e018

doi: 10.48130/grares-0024-0016