[1]

Wei Z, Deng Z. 2022. Research hotspots and trends of comprehensive utilization of phosphogypsum: bibliometric analysis. Journal of Environmental Radioactivity 242:106778

doi: 10.1016/j.jenvrad.2021.106778
[2]

Qin X, Cao Y, Guan H, Hu Q, Liu Z, et al. 2023. Resource utilization and development of phosphogypsum-based materials in civil engineering. Journal of Cleaner Production 387:135858

doi: 10.1016/j.jclepro.2023.135858
[3]

Bouargane B, Laaboubi K, Biyoune MG, Bakiz B, Atbir A. 2023. Effective and innovative procedures to use phosphogypsum waste in different application domains: review of the environmental, economic challenges and life cycle assessment. Journal of Material Cycles and Waste Management 25:1288−1308

doi: 10.1007/s10163-023-01617-8
[4]

Fuleihan NF. 2012. Phosphogypsum disposal-the pros & cons of wet versus dry stacking. Procedia Engineering 46:195−205

doi: 10.1016/j.proeng.2012.09.465
[5]

Chernysh Y, Yakhnenko O, Chubur V, Roubik H. 2021. Phosphogypsum recycling: a review of environmental issues, current trends, and prospects. Applied Sciences 11:1575

doi: 10.3390/app11041575
[6]

Bilal E, Bellefqih H, Bourgier V, Mazouz H, Dumitraş DG, et al. 2023. Phosphogypsum circular economy considerations: a critical review from more than 65 storage sites worldwide. Journal of Cleaner Production 414:137561

doi: 10.1016/j.jclepro.2023.137561
[7]

Huang L, Liu Y, Ferreira JFS, Wang M, Na J, et al. 2022. Long-term combined effects of tillage and rice cultivation with phosphogypsum or farmyard manure on the concentration of salts, minerals, and heavy metals of saline-sodic paddy fields in Northeast China. Soil and Tillage Research 215:105222

[8]

Palencia P, Luis Guerrero J, Millán R, Mosqueda F, Pedro Bolívar J. 2024. Utilization of phosphogypsum and red mud in alfalfa cultivation. Heliyon 10:e28751

doi: 10.1016/j.heliyon.2024.e28751
[9]

Lambers H, Barrow NJ. 2020. P2O5, K2O, CaO, MgO, and basic cations: pervasive use of references to molecules that do not exist in soil. Plant and Soil 452:1−4

doi: 10.1007/s11104-020-04593-2
[10]

Qi H, Ma B, Tan H, Su Y, Lu W, et al. 2022. Influence of fluoride ion on the performance of PCE in hemihydrate gypsum pastes. Journal of Building Engineering 46:103582

doi: 10.1016/j.jobe.2021.103582
[11]

Oliveira V, Labrincha J, Dias-Ferreira C. 2018. Extraction of phosphorus and struvite production from the anaerobically digested organic fraction of municipal solid waste. Journal of Environmental Chemical Engineering 6:2837−2845

doi: 10.1016/j.jece.2018.04.034
[12]

Cordell D, Brownlie WJ, Esham M. 2021. Commentary: time to take responsibility on phosphorus: towards circular food systems. Global Environmental Change 71:102406

doi: 10.1016/j.gloenvcha.2021.102406
[13]

Sharma RK, Adholeya A, Puri A, Das M. 2012. Bioextraction: the interface of biotechnology and green chemistry. In Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science, eds Baskar C, Baskar S, Dhillon RS. Berlin, Heidelberg: Springer. pp. 435–457 doi: 10.1007/978-3-642-28418-2_14

[14]

Johnson DB. 2014. Biomining—biotechnologies for extracting and recovering metals from ores and waste materials. Current Opinion in Biotechnology 30:24−31

doi: 10.1016/j.copbio.2014.04.008
[15]

Pilon-Smits EAH, Freeman JL. 2006. Environmental cleanup using plants: biotechnological advances and ecological considerations. Frontiers in Ecology and the Environment 4:203−210

doi: 10.1890/1540-9295(2006)004[0203:ECUPBA]2.0.CO;2
[16]

Monachon M, Albelda-Berenguer M, Lombardo T, Cornet E, Moll-Dau F, et al. 2021. Evaluation of an alternative biotreatment for the extraction of harmful iron and sulfur species from waterlogged wood. The European Physical Journal Plus 136:937

doi: 10.1140/epjp/s13360-021-01908-9
[17]

Ristović I, Štyriaková D, Štyriaková I, Šuba J, Širadović E. 2022. Bioleaching process for copper extraction from waste in alkaline and acid medium. Minerals 12:100

doi: 10.3390/min12010100
[18]

Vardanyan A, Zhang R, Khachatryan A, Melkonyan Z, Hovhannisyan A, et al. 2024. Extraction of copper from copper concentrate by indigenous association of iron-oxidizing bacteria. Separations 11:124

doi: 10.3390/separations11040124
[19]

Wang X, Ma L, Wu J, Xiao Y, Tao J, et al. 2020. Effective bioleaching of low-grade copper ores: insights from microbial cross experiments. Bioresource Technology 308:123273

doi: 10.1016/j.biortech.2020.123273
[20]

Martín-Hernández E, Taifouris M, Martín M. 2022. Addressing the contribution of agricultural systems to the phosphorus pollution challenge: a multi-dimensional perspective. Frontiers in Chemical Engineering 4:970707

doi: 10.3389/fceng.2022.970707
[21]

Feng J, Chen L, Xia T, Ruan Y, Sun X, et al. 2023. Microbial fertilizer regulates C:N:P stoichiometry and alleviates phosphorus limitation in flue-cured tobacco planting soil. Scientific Reports 13:10276

doi: 10.1038/s41598-023-37438-w
[22]

Peng F, He W, Gu R, Liang D, Li D, et al. 2024. Enhancing phosphorus release and recovery from waste activated sludge by citric acid treatment and cyclic extraction. Chemical Engineering Journal 501:157461

doi: 10.1016/j.cej.2024.157461
[23]

García-Berumen JA, Flores de la Torre JA, de los Santos-Villalobos S, Espinoza-Canales A, Echavarría-Cháirez FG, et al. 2025. Phosphorus dynamics and sustainable agriculture: the role of microbial solubilization and innovations in nutrient management. Current Research in Microbial Sciences 8:100326

doi: 10.1016/j.crmicr.2024.100326
[24]

Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587

doi: 10.1186/2193-1801-2-587
[25]

Alori ET, Glick BR, Babalola OO. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology 8:971

doi: 10.3389/fmicb.2017.00971
[26]

Tian L, Han M, Liang K, Liu H, Feng B. 2024. Profiling of farmland microorganisms in maize and minor-grain crops under extreme drought conditions. Applied Soil Ecology 204:105743

doi: 10.1016/j.apsoil.2024.105743
[27]

Zheng Y, Yu S, Li Y, Peng J, Yu J, et al. 2022. Efficient bioimmobilization of cadmium contamination in phosphate mining wastelands by the phosphate solubilizing fungus Penicillium oxalicum ZP6. Biochemical Engineering Journal 187:108667

doi: 10.1016/j.bej.2022.108667
[28]

Coreño-Alonso J, Coreño-Alonso O, Martínez-Rosales JM. 2014. Apatite formation on alumina: the role of the initial adsorption of calcium and phosphate ions. Ceramics International 40:4909−4915

doi: 10.1016/j.ceramint.2013.10.079
[29]

Beheshti M, Alikhani HA, Pourbabaee AA, Etesami H, Asadi Rahmani H, et al. 2022. Enriching periphyton with phosphate-solubilizing microorganisms improves the growth and concentration of phosphorus and micronutrients of rice plant in calcareous paddy soil. Rhizosphere 24:100590

doi: 10.1016/j.rhisph.2022.100590
[30]

Bolo P, Kihara J, Mucheru-Muna M, Njeru EM, Kinyua M, et al. 2021. Application of residue, inorganic fertilizer and lime affect phosphorus solubilizing microorganisms and microbial biomass under different tillage and cropping systems in a Ferralsol. Geoderma 390:114962

doi: 10.1016/j.geoderma.2021.114962
[31]

Rawat P, Das S, Shankhdhar D, Shankhdhar SC. 2021. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition 21:49−68

doi: 10.1007/s42729-020-00342-7
[32]

Fu A, Li Q, Li Y, Chen Y, Wei Y, et al. 2025. Nidustrin A, cysteine-retained emestrin with a unique 18-membered macrocyclic lactone from the endophytic fungus Aspergillus nidulans. Bioorganic Chemistry 155:108105

doi: 10.1016/j.bioorg.2024.108105
[33]

Zhang X, Rajendran A, Grimm S, Sun X, Lin H, et al. 2023. Screening of calcium- and iron-targeted phosphorus solubilizing fungi for agriculture production. Rhizosphere 26:100689

doi: 10.1016/j.rhisph.2023.100689
[34]

Li Y, Xu Z, Zhang L, Chen W, Feng G. 2024. Dynamics between soil fixation of fertilizer phosphorus and biological phosphorus mobilization determine the phosphorus budgets in agroecosystems. Agriculture, Ecosystems & Environment 375:109174

doi: 10.1016/j.agee.2024.109174
[35]

Timofeeva A, Galyamova M, Sedykh S. 2022. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants 11:2119

doi: 10.3390/plants11162119
[36]

da Silva LI, Pereira MC, Xavier de Carvalho AM, Buttros VH, Pasqual M, et al. 2023. Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agriculture 13:432

doi: 10.3390/agriculture13020462
[37]

Dusengemungu L, Kasali G, Gwanama C, Mubemba B. 2021. Overview of fungal bioleaching of metals. Environmental Advances 5:100083

doi: 10.1016/j.envadv.2021.100083
[38]

Duan H, Zhang X, Zhao X, Xu C, Zhang D, et al. 2025. Study on biogenic acid-mediated enhanced leaching of lepidolite by Aspergillus niger based on transcriptomics. Bioresource Technology 418:131920

doi: 10.1016/j.biortech.2024.131920
[39]

Ashrafi-Saiedlou S, Rasouli-Sadaghiani M, Samadi A, Barin M, Sepehr E. 2024. Aspergillus niger as an eco-friendly agent for potassium release from K- bearing minerals: isolation, screening and culture medium optimization using Plackett-Burman design and response surface methodology. Heliyon 10:e29117

doi: 10.1016/j.heliyon.2024.e29117
[40]

Yu L, Wang T, Wang B, Pan L. 2024. The mechanism of short hypha formation and high protein production system mediated by cell wall integrity signaling pathway in Aspergillus niger. International Journal of Biological Macromolecules 283:137413

doi: 10.1016/j.ijbiomac.2024.137413
[41]

Priha O, Sarlin T, Blomberg P, Wendling L, Makinen J, et al. 2014. Bioleaching phosphorus from fluorapatites with acidophilic bacteria. Hydrometallurgy 150:269−275

doi: 10.1016/j.hydromet.2014.08.002
[42]

de Oliveira Mendes G, de Freitas ALM, Pereira OL, da Silva IR, Bojkov Vassilev N, et al. 2014. Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Annals of Microbiology 64:239−249

doi: 10.1007/s13213-013-0656-3
[43]

Chaerun SK, Sulistyo RS, Minwal WP, Mubarok MZ. 2017. Indirect bioleaching of low-grade nickel limonite and saprolite ores using fungal metabolic organic acids generated by Aspergillus niger. Hydrometallurgy 174:29−37

doi: 10.1016/j.hydromet.2017.08.006
[44]

Qiu J, Song X, Li S, Zhu B, Chen Y, et al. 2021. Experimental and modeling studies of competitive Pb (II) and Cd (II) bioaccumulation by Aspergillus niger. Applied Microbiology and Biotechnology 105:6477−6488

doi: 10.1007/s00253-021-11497-3
[45]

Meng L, Pan S, Zhou L, Santasup C, Su M, et al. 2022. Evaluating the survival of Aspergillus niger in a highly polluted red soil with addition of Phosphogypsum and bioorganic fertilizer. Environmental Science and Pollution Research 29:76446−76455

doi: 10.1007/s11356-022-21243-5
[46]

Chen H, Zhang J, Tang L, Su M, Tian D, et al. 2019. Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria. Environment International 127:395−401

doi: 10.1016/j.envint.2019.03.068
[47]

Gómez-Ordóñez E, Rupérez P. 2011. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocolloids 25:1514−1520

doi: 10.1016/j.foodhyd.2011.02.009
[48]

Pereira L, Amado AM, Critchley AT, van de Velde F, Ribeiro-Claro PJA. 2009. Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocolloids 23:1903−1909

doi: 10.1016/j.foodhyd.2008.11.014
[49]

Kourkoumelis N, Lani A, Tzaphlidou M. 2012. Infrared spectroscopic assessment of the inflammation-mediated osteoporosis (IMO) model applied to rabbit bone. Journal of Biological Physics 38:623−635

doi: 10.1007/s10867-012-9276-6
[50]

Garip S, Severcan F. 2010. Determination of simvastatin-induced changes in bone composition and structure by Fourier transform infrared spectroscopy in rat animal model. Journal of Pharmaceutical and Biomedical Analysis 52:580−588

doi: 10.1016/j.jpba.2010.01.044
[51]

Chen S, Chen J, He X, Su Y, Jin Z, et al. 2023. Comparative analysis of colloid-mechanical microenvironments on the efficient purification of phosphogypsum. Construction and Building Materials 392:132037

doi: 10.1016/j.conbuildmat.2023.132037
[52]

Yeasmin S, Singh B, Kookana RS, Farrell M, Sparks DL, et al. 2014. Influence of mineral characteristics on the retention of low molecular weight organic compounds: a batch sorption-desorption and ATR-FTIR study. Journal of Colloid and Interface Science 432:246−257

doi: 10.1016/j.jcis.2014.06.036
[53]

Guo Q, Yi H, Jia F, Song S. 2022. Design of MoS2/MMT bi-layered aerogels integrated with phase change materials for sustained and efficient solar desalination. Desalination 541:116028

doi: 10.1016/j.desal.2022.116028
[54]

Ölmez F, Mustafa Z, Türkölmez Ş, Bildirici AE, Ali SA, et al. 2024. Phosphate-solubilizing fungus (PSF) - mediated phosphorous solubilization and validation through Artificial intelligence computation. World Journal of Microbiology and Biotechnology 40:376

doi: 10.1007/s11274-024-04182-w
[55]

Li SL, Xu S, Wang TJ, Yue FJ, Peng T, et al. 2020. Effects of agricultural activities coupled with karst structures on riverine biogeochemical cycles and environmental quality in the karst region. Agriculture, Ecosystems & Environment 303:107120

doi: 10.1016/j.agee.2020.107120
[56]

Kumar A, Teja ES, Mathur V, Kumari R. 2020. Phosphate-solubilizing fungi: current perspective, mechanisms and potential agricultural applications. In Agriculturally Important Fungi for Sustainable Agriculture, eds Yadav A, Mishra S, Kour D, Yadav N, Kumar A. Cham: Springer. pp. 121–141 doi: 10.1007/978-3-030-45971-0_6

[57]

Zhang L, Zhou J, George TS, Limpens E, Feng G. 2022. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science 27:402−411

doi: 10.1016/j.tplants.2021.10.008
[58]

Duhamel S. 2025. The microbial phosphorus cycle in aquatic ecosystems. Nature Reviews Microbiology 23:239−255

doi: 10.1038/s41579-024-01119-w
[59]

Gurav PP, Kollah B, Shirale AO, Yadav DK, Mohanty SR, et al. 2024. Phosphorus solubilizing microorganisms: a technique for enhancing phosphorus use efficiency. Journal of Plant Nutrition 47:3906−3920

doi: 10.1080/01904167.2024.2388798
[60]

Luyckx L, Sousa Correia DS, Van Caneghem J. 2021. Linking phosphorus extraction from different types of biomass incineration ash to ash mineralogy, ash composition and chemical characteristics of various types of extraction liquids. Waste and Biomass Valorization 12:5235−5248

doi: 10.1007/s12649-021-01368-3
[61]

Wang M, Yuan X, Dong W, Fu Q, Ao X, et al. 2023. Gradient removal of Si and P impurities from phosphogypsum and preparation of anhydrous calcium sulfate. Journal of Environmental Chemical Engineering 11:110312

doi: 10.1016/j.jece.2023.110312
[62]

Rivera RM, Ulenaers B, Ounoughene G, Binnemans K, Van Gerven T. 2018. Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching. Minerals Engineering 119:82−92

doi: 10.1016/j.mineng.2018.01.023
[63]

Cheng S, Li W, Vaughan J, Ma X, Chan J, et al. 2025. Advances in the integrated recovery of valuable components from titanium-bearing blast furnace slag: a review. Sustainable Materials and Technologies 44:e01384

doi: 10.1016/j.susmat.2025.e01384
[64]

Brucker E, Kernchen S, Spohn M. 2020. Release of phosphorus and silicon from minerals by soil microorganisms depends on the availability of organic carbon. Soil Biology and Biochemistry 143:107737

doi: 10.1016/j.soilbio.2020.107737
[65]

Soumare A, Sarr D, Diédhiou AG. 2023. Potassium sources, microorganisms and plant nutrition: challenges and future research directions. Pedosphere 33:105−115

doi: 10.1016/j.pedsph.2022.06.025
[66]

Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA. 2010. Plant growth promotion by phosphate solubilizing fungi – current perspective. Archives of Agronomy and Soil Science 56:73−98

doi: 10.1080/03650340902806469
[67]

Zhang L, Deng X, Xiao J, Zhao W, Zou P, et al. 2025. Root metabolites regulated by FERONIA promote phosphorus-solubilizing rhizobacteria enrichment induced by Arabidopsis thaliana coping with phosphorus deficiency. Microbiological Research 292:128030

doi: 10.1016/j.micres.2024.128030
[68]

Khourchi S, Elhaissoufi W, Loum M, Ibnyasser A, Haddine M, et al. 2022. Phosphate solubilizing bacteria can significantly contribute to enhance P availability from polyphosphates and their use efficiency in wheat. Microbiological Research 262:127094

doi: 10.1016/j.micres.2022.127094
[69]

Rolfe SA, Griffiths J, Ton J. 2019. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Current Opinion in Microbiology 49:73−82

doi: 10.1016/j.mib.2019.10.003