[1]

Erisman JW, Hensen A, de Vries W, Kros H, van de Wal T, et al. 2002. NitroGenius: a nitrogen decision support system. AMBIO: A Journal of the Human Environment 31(2):190−196

doi: 10.1579/0044-7447-31.2.190
[2]

Wang G, Zhang R, Gomez ME, Yang L, Zamora ML, et al. 2016. Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America 48(113):13630−13635

doi: 10.1073/pnas.1616540113
[3]

Zhang R, Wang G, Guo S, Zamora ML, Ying Q, et al. 2015. Formation of urban fine particulate matter. Chemical Reviews 115(10):3803−3855

doi: 10.1021/acs.chemrev.5b00067
[4]

Meng F, Zhang Y, Kang J, Heal MR, Reis S, et al. 2022. Trends in secondary inorganic aerosol pollution in China and its responses to emission controls of precursors in wintertime. Atmospheric Chemistry Physics 22:6291−6308

doi: 10.5194/acp-22-6291-2022
[5]

Karthick Raja Namasivayam S, Priyanka S, Lavanya M, Krithika Shree S, Francis AL, et al. 2024. A review on vulnerable atmospheric aerosol nanoparticles: sources, impact on the health, ecosystem and management strategies. Journal of Environmental Management 365:121644

doi: 10.1016/j.jenvman.2024.121644
[6]

Shi Y, Cui S, Ju X, Cai Z, Zhu Y. 2015. Impacts of reactive nitrogen on climate change in China. Scientific Reports 5:8118

doi: 10.1038/srep08118
[7]

Lin BL, Kumon Y, Inoue K, Tobari N, Xue M, et al. 2021. Increased nitrogen deposition contributes to plant biodiversity loss in Japan: insights from long-term historical monitoring data. Environmental Pollution 290:118033

doi: 10.1016/j.envpol.2021.118033
[8]

Feng S, Wang M, Heal MR, Liu X, Liu X, et al. 2024. The impact of emissions controls on atmospheric nitrogen inputs to Chinese river basins highlights the urgency of ammonia abatement. Science Advances 10:2558

doi: 10.1126/sciadv.adp2558
[9]

Liu X, Du E. 2020. Atmospheric reactive nitrogen in China. Part I: reactive nitrogen emission and deposition in China. Singapore: Springer doi: 10.1007/978-981-13-8514-8

[10]

Schlesinger WH. 2009. On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences of the United States of America 106(1):203−208

doi: 10.1073/pnas.0810193105
[11]

Zheng B, Tong D, Li M, Liu F, Hong C, et al. 2018. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics 18(19):14095−14111

doi: 10.5194/acp-18-14095-2018
[12]

Xu W, Luo XS, Pan YP, Zhang L, Tang AH, et al. 2015. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmospheric Chemistry and Physics 15:12345−12360

doi: 10.5194/acp-15-12345-2015
[13]

Liu L, Wen Z, Liu S, Zhang X, Liu X. 2024. Decline in atmospheric nitrogen deposition in China between 2010 and 2020. Nature Geoscience 17(8):733−736

doi: 10.1038/s41561-024-01484-4
[14]

Zhang L, Chen Y, Zhao Y, Henze DK, Zhu L, et al. 2018. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. Atmospheric Chemistry and Physics 18:339−355

doi: 10.5194/acp-18-339-2018
[15]

Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, et al. 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1621):20130164

doi: 10.1098/rstb.2013.0164
[16]

Zhu X, Shen J, Li Y, Liu X, Xu W, et al. 2021. Nitrogen emission and deposition budget in an agricultural catchment in subtropical Central China. Environmental Pollution 289:117870

doi: 10.1016/j.envpol.2021.117870
[17]

Li M, Liu H, Geng G, Hong C, Liu F, et al. 2017. Anthropogenic emission inventories in China: a review. National Science Review 4(6):834−866

doi: 10.1093/nsr/nwx150
[18]

Ning X, Li J, Zhuang P, Lai S, Zheng X. 2024. Wildfire combustion emission inventory in Southwest China (2001–2020) based on MODIS fire radiative energy data. Atmospheric Pollution Research 15(11):102279

doi: 10.1016/j.apr.2024.102279
[19]

Zhao Y, Li B, Dong J, Li Y, Wang Y, et al. 2023. Improved ammonia emission inventory of fertilizer application for three major crops in China based on phenological data. Science of The Total Environment 896:165225

doi: 10.1016/j.scitotenv.2023.165225
[20]

Zhang Q, Li Y, Wang M, Wang K, Meng F, et al. 2021. Atmospheric nitrogen deposition: a review of quantification methods and its spatial pattern derived from the global monitoring networks. Ecotoxicology and Environmental Safety 216:112180

doi: 10.1016/j.ecoenv.2021.112180
[21]

Yu X, Shen L, Hou X, Yuan L, Pan Y, et al. 2020. High-resolution anthropogenic ammonia emission inventory for the Yangtze River Delta, China. Chemosphere 251:126342

doi: 10.1016/j.chemosphere.2020.126342
[22]

Zhu C, Qu X, Qiu M, Zhu C, Wang C, et al. 2023. High spatiotemporal resolution vehicular emission inventory in Beijing-Tianjin-Hebei and its surrounding areas (BTHSA) during 2000–2020, China. Science of The Total Environment 873:162389

doi: 10.1016/j.scitotenv.2023.162389
[23]

Wen Z, Wang R, Li Q, Liu J, Ma X, et al. 2022. Spatiotemporal variations of nitrogen and phosphorus deposition across China. Science of The Total Environment 830:154740

doi: 10.1016/j.scitotenv.2022.154740
[24]

Hou Y, Xu W, Cong WF, Jin K, Xu J, et al. 2023. Agricultural green development in the Erhai Lake Basin — the way forward. Frontiers of Agricultural Science and Engineering 10(4):510−517

doi: 10.15302/J-FASE-2023524
[25]

Kang J, Du X, Tang B, Shen Q, Li J, et al. 2025. Wet and dry deposition of atmospheric nitrogen to Lake Erhai basin: composition, spatiotemporal patterns and implications for nitrogen inputs into the lake. Atmospheric Environment 345:120995

doi: 10.1016/j.atmosenv.2024.120995
[26]

Zou T, Meng F, Zhou J, Ying H, Liu X, et al. 2023. Quantifying nitrogen and phosphorus losses from crop and livestock production and mitigation potentials in Erhai Lake Basin, China. Agricultural Systems 211:103745

doi: 10.1016/j.agsy.2023.103745
[27]

Ji N, Wang S, Zhang L. 2017. Characteristics of dissolved organic phosphorus inputs to freshwater lakes: a case study of Lake Erhai, southwest China. Science of The Total Environment 601-602:1544−1555

doi: 10.1016/j.scitotenv.2017.05.265
[28]

National Bureau of Statistics of China, Dali Survey Team (NBSC). 2022. Dali Statistical Yearbook. China Statictics Press, Dali, China (in Chinese)

[29]

Yang J, Huang X. 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth System Science Data 13(8):3907−3925

doi: 10.5194/essd-13-3907-2021
[30]

Ministry of Ecology and Environment of the People's Republic of China (MEE). 2014. Technical guidelines for the compilation of atmospheric ammonia source emission inventories (for trial implementation). MEE, China (in Chinese)

[31]

Zhu C, Li R, Qiu M, Zhu C, Gai Y, et al. 2024. High spatiotemporal resolution ammonia emission inventory from typical industrial and agricultural province of China from 2000 to 2020. Science of The Total Environment 918:170732

doi: 10.1016/j.scitotenv.2024.170732
[32]

Ministry of Ecology and Environment of the People's Republic of China (MEE). 2014. Technical guideline for the compilation of air pollutant emission inventory from biomass combustion sources (for trial implementation). MEE, China (in Chinese)

[33]

National Bureau of Statistics of China, Dali Survey Team (NBSC). 2022. Yunnan Statistical Yearbook. China Statictics Press, Dali, China (in Chinese)

[34]

Ministry of Ecology and Environment of the People's Republic of China (MEE). 2014. Technical guideline for compiling the air pollutant emission inventory of road motor vehicles (for trial implementation). MEE, China (in Chinese)

[35]

Gómez CD, González CM, Osses M, Aristizábal BH. 2018. Spatial and temporal disaggregation of the on-road vehicle emission inventory in a medium-sized Andean city. Comparison of GIS-based top-down methodologies. Atmospheric Environment 179:142−155

doi: 10.1016/j.atmosenv.2018.01.049
[36]

Serafin S, Adler B, Cuxart J, De Wekker SFJ, Gohm A, et al. 2018. Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere 9:102

doi: 10.3390/atmos9030102
[37]

Shen Q, Du X, Kang J, Li J, Pan Y, et al. 2024. Atmospheric wet and dry phosphorus deposition in Lake Erhai, China. Environmental Pollution 355:124200

doi: 10.1016/j.envpol.2024.124200
[38]

Zhi G, Du J, Chen A, Jin W, Ying N, et al. 2024. Progression of an emission inventory of China integrating CO2 with air pollutants: a chance to learn the influence of development on emissions. Atmospheric Environment 316:120184

doi: 10.1016/j.atmosenv.2023.120184
[39]

Gao Y, Zhang L, Huang A, Kou W, Bo X, et al. 2022. Unveiling the spatial and sectoral characteristics of a high-resolution emission inventory of CO2 and air pollutants in China. Science of The Total Environment 847:157623

doi: 10.1016/j.scitotenv.2022.157623
[40]

Wu X, Kang J, Du X, Shen Q, Feng J, et al. 2024. Study on characteristics of cropland ammonia emissions and its near-source deposition in typical small watershed of plateau lake. Ecology and Environmental Sciences 33(08):1236−1244 (in Chinese)

doi: 10.16258/j.cnki.1674-5906.2024.08.008
[41]

Li B, Chen L, Shen W, Jin J, Wang T, et al. 2021. Improved gridded ammonia emission inventory in China. Atmospheric Chemistry and Physics 21(20):15883−15900

doi: 10.5194/acp-21-15883-2021
[42]

Ti C, Gao B, Luo Y, Wang S, Chang SX, et al. 2018. Dry deposition of N has a major impact on surface water quality in the Taihu Lake region in southeast China. Atmospheric Environment 190:1−9

doi: 10.1016/j.atmosenv.2018.07.017
[43]

Zhang Y, Liu C, Liu X, Xu W. 2019. Atmospheric nitrogen deposition around the Dongting Lake, China. Atmospheric Environment 207:197−204

doi: 10.1016/j.atmosenv.2019.03.034
[44]

Zhang X, Lin C, Zhou X, Lei K, Guo B, et al. 2019. Concentrations, fluxes, and potential sources of nitrogen and phosphorus species in atmospheric wet deposition of the Lake Qinghai Watershed, China. Science of The Total Environment 682:523−531

doi: 10.1016/j.scitotenv.2019.05.224
[45]

Zhan X, Bo Y, Zhou F, Liu X, Paerl HW, et al. 2017. Evidence for the importance of atmospheric nitrogen deposition to eutrophic Lake Dianchi, China. Environmental Science & Technology 51(12):6699−6708

doi: 10.1021/acs.est.6b06135
[46]

Li W, Wang X, Song W, Zhang Z, Wang X, et al. 2025. On the contribution of atmospheric reactive nitrogen deposition to nitrogen burden in a eutrophic Lake in Eastern China. Water Research 268:122597

doi: 10.1016/j.watres.2024.122597
[47]

Zhang X, Lin C, E C, Liu X. 2022. Atmospheric dry deposition of nitrogen and phosphorus in Lake Qinghai, Tibet Plateau. Atmospheric Pollution Research 13(7):101481

doi: 10.1016/j.apr.2022.101481
[48]

Huang M. 2022. Water quality characteristics and pollution load estimation of main rivers around Erhai Lake. Yangtze River 53(1):61−66 (in Chinese)

doi: 10.16232/j.cnki.1001-4179.2022.01.010
[49]

Cooper OR, Parrish DD, Stohl A, Trainer M, Nédélec P, et al. 2010. Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 463(7279):344−348

doi: 10.1038/nature08708
[50]

Lang MN, Gohm A, Wagner JS. 2015. The impact of embedded valleys on daytime pollution transport over a mountain range. Atmospheric Chemistry and Physics 15(20):11981

doi: 10.5194/acp-15-11981-2015
[51]

Li X, Zhang C, Liu P, Liu J, Zhang Y, et al. 2020. Significant influence of the intensive agricultural activities on atmospheric PM2.5 during autumn harvest seasons in a rural area of the North China Plain. Atmospheric Environment 241:117844

doi: 10.1016/j.atmosenv.2020.117844
[52]

IPCC. 1997. Quantifying uncertainties in practice. In Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. IES, IPCC, OECD, Bracknell