[1]

Bukowska B, Mokra K, Michałowicz J. 2022. Benzo[a]pyrene—environmental occurrence, human exposure, and mechanisms of toxicity. International Journal of Molecular Sciences 23(11):6348

doi: 10.3390/ijms23116348
[2]

Das DN, Bhutia SK. 2018. Inevitable dietary exposure of Benzo[a]pyrene: carcinogenic risk assessment an emerging issues and concerns. Current Opinion in Food Science 24:16−25

doi: 10.1016/j.cofs.2018.10.008
[3]

Negi K, Chaudhary P. 2024. Benzo[a]pyrene: a carcinogen, its sources, adverse effects, and preventions. The Applied Biology & Chemistry Journal 5(3):44−56

doi: 10.52679/tabcj.2024.0007
[4]

Chepelev NL, Moffat ID, Labib S, Bourdon-Lacombe J, Kuo B, et al. 2015. Integrating toxicogenomics into human health risk assessment: lessons learned from the benzo[a]pyrene case study. Critical Reviews in Toxicology 45(1):44−52

doi: 10.3109/10408444.2014.973935
[5]

Mo J, Chen Y, Lai KP, Seemann F, Liu W. 2025. Benzo[a]pyrene osteotoxicity, neurotoxicity, and epigenetic effects in fishes and mammals: a review. Environmental Chemistry Letters 23(6):1837−1862

doi: 10.1007/s10311-025-01859-y
[6]

Zeb R, Yin X, Chen F, Wang KJ. 2024. Chronic exposure to environmental concentrations of benzo[a]pyrene causes multifaceted toxic effects of developmental compromise, redox imbalance, and modulated transcriptional profiles in the early life stages of marine medaka (Oryzias melastigma). Aquatic Toxicology 273:107016

doi: 10.1016/j.aquatox.2024.107016
[7]

Chen Y, Yang Y, Qin X, Wang J, Tang G, et al. 2025. Embryonic benzo[a]pyrene exposure induces multigenerational reproductive effects on adult male medaka: phenotypic and transcriptomic insights. Toxics 13(10):886

doi: 10.3390/toxics13100886
[8]

Huang L, Wang C, Zhang Y, Li J, Zhong Y, et al. 2012. Benzo[a]pyrene exposure influences the cardiac development and the expression of cardiovascular relative genes in zebrafish (Danio rerio) embryos. Chemosphere 87(4):369−375

doi: 10.1016/j.chemosphere.2011.12.026
[9]

Huang L, Zuo Z, Zhang Y, Wu M, Lin JJ, et al. 2014. Use of toxicogenomics to predict the potential toxic effect of Benzo(a)pyrene on zebrafish embryos: ocular developmental toxicity. Chemosphere 108:55−61

doi: 10.1016/j.chemosphere.2014.02.078
[10]

Corrales J, Thornton C, White M, Willett KL. 2014. Multigenerational effects of benzo[a]pyrene exposure on survival and developmental deformities in zebrafish larvae. Aquatic Toxicology 148:16−26

doi: 10.1016/j.aquatox.2013.12.028
[11]

Seemann F, Peterson DR, Witten PE, Guo BS, Shanthanagouda AH, et al. 2015. Insight into the transgenerational effect of benzo[a]pyrene on bone formation in a teleost fish (Oryzias latipes). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 178:60−67

doi: 10.1016/j.cbpc.2015.10.001
[12]

Mo J, Au DWT, Wan MT, Shi J, Zhang G, et al. 2020. Multigenerational impacts of benzo[a]pyrene on bone modeling and remodeling in medaka (Oryzias latipes). Environmental Science & Technology 54(19):12271−12284

doi: 10.1021/acs.est.0c02416
[13]

Mo J, Wan MT, Au DWT, Shi J, Tam N, et al. 2023. Transgenerational bone toxicity in F3 medaka (Oryzias latipes) induced by ancestral benzo[a]pyrene exposure: cellular and transcriptomic insights. Journal of Environmental Sciences 127:336−348

doi: 10.1016/j.jes.2022.04.051
[14]

Yamaguchi A, Uchida M, Ishibashi H, Hirano M, Ichikawa N, et al. 2020. Potential mechanisms underlying embryonic developmental toxicity caused by benzo[a]pyrene in Japanese medaka (Oryzias latipes). Chemosphere 242:125243

doi: 10.1016/j.chemosphere.2019.125243
[15]

He C, Zuo Z, Shi X, Li R, Chen D, et al. 2011. Effects of benzo(a)pyrene on the skeletal development of Sebastiscus marmoratus embryos and the molecular mechanism involved. Aquatic Toxicology 101(2):335−341

doi: 10.1016/j.aquatox.2010.11.008
[16]

Fang X, Corrales J, Thornton C, Clerk T, Scheffler BE, et al. 2015. Transcriptomic changes in zebrafish embryos and larvae following benzo[a]pyrene exposure. Toxicological Sciences 146(2):395−411

doi: 10.1093/toxsci/kfv105
[17]

Elfawy HA, Anupriya S, Mohanty S, Patel P, Ghosal S, et al. 2021. Molecular toxicity of Benzo(a)pyrene mediated by elicited oxidative stress infer skeletal deformities and apoptosis in embryonic zebrafish. Science of The Total Environment 789:147989

doi: 10.1016/j.scitotenv.2021.147989
[18]

Tarasco M, Gavaia PJ, Bensimon-Brito A, Cardeira-da-Silva J, Ramkumar S, et al. 2021. New insights into benzo[a]pyrene osteotoxicity in zebrafish. Ecotoxicology and Environmental Safety 226:112838

doi: 10.1016/j.ecoenv.2021.112838
[19]

Bracewell-Milnes T, Saso S, Abdalla H, Nikolau D, Norman-Taylor J, et al. 2017. Metabolomics as a tool to identify biomarkers to predict and improve outcomes in reproductive medicine: a systematic review. Human Reproduction Update 23(6):723−736

doi: 10.1093/humupd/dmx023
[20]

Zhao J, Yao K, Yu H, Zhang L, Xu Y, et al. 2021. Metabolic remodelling during early mouse embryo development. Nature Metabolism 3(10):1372−1384

doi: 10.1038/s42255-021-00464-x
[21]

Cheung NKM, Hinton DE, Au DWT. 2012. A high-throughput histoarray for quantitative molecular profiling of multiple, uniformly oriented medaka (Oryzias latipes) embryos. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 155(1):18−25

doi: 10.1016/j.cbpc.2011.05.010
[22]

da Silva Moreira S, de Lima Inocêncio LC, Jorge BC, Reis ACC, Hisano H, et al. 2021. Effects of benzo(a)pyrene at environmentally relevant doses on embryo-fetal development in rats. Environmental Toxicology 36(5):831−839

doi: 10.1002/tox.23085
[23]

Wang D, Rietdijk MH, Kamelia L, Boogaard PJ, Rietjens IMCM. 2021. Predicting the in vivo developmental toxicity of benzo[a]pyrene (BaP) in rats by an in vitro–in silico approach. Archives of Toxicology 95(10):3323−3340

doi: 10.1007/s00204-021-03128-7
[24]

Costa J, Reis-Henriques MA, Castro LFC, Ferreira M. 2012. Gene expression analysis of ABC efflux transporters, CYP1A and GSTα in Nile tilapia after exposure to benzo(a)pyrene. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 155(3):469−482

doi: 10.1016/j.cbpc.2011.12.004
[25]

Kranz J, Hessel S, Aretz J, Seidel A, Petzinger E, et al. 2014. The role of the efflux carriers Abcg2 and Abcc2 for the hepatobiliary elimination of benzo[a]pyrene and its metabolites in mice. Chemico-Biological Interactions 224:36−41

doi: 10.1016/j.cbi.2014.10.009
[26]

Yuan L, Lv B, Zha J, Wang W, Wang Z. 2014. Basal and benzo[a]pyrene-induced expression profile of phase I and II enzymes and ABC transporter mRNA in the early life stage of Chinese rare minnows (Gobiocypris rarus). Ecotoxicology and Environmental Safety 106:86−94

doi: 10.1016/j.ecoenv.2014.04.018
[27]

Takahashi M. 2012. Oxidative stress and redox regulation on in vitro development of mammalian embryos. The Journal of Reproduction and Development 58(1):1−9

doi: 10.1262/jrd.11-138n
[28]

Hou Z, Fuiman LA. 2020. Nutritional programming in fishes: insights from mammalian studies. Reviews in Fish Biology and Fisheries 30(1):67−92

doi: 10.1007/s11160-019-09590-y
[29]

Miyazawa H, Aulehla A. 2018. Revisiting the role of metabolism during development. Development 145:dev131110

doi: 10.1242/dev.131110
[30]

Riddle MR, Hu CK. 2021. Fish models for investigating nutritional regulation of embryonic development. Developmental Biology 476:101−111

doi: 10.1016/j.ydbio.2021.03.012
[31]

Mierziak J, Burgberger M, Wojtasik W. 2021. 3-Hydroxybutyrate as a metabolite and a signal molecule regulating processes of living organisms. Biomolecules 11(3):402

doi: 10.3390/biom11030402
[32]

Lin AP, Abbas S, Kim SW, Ortega M, Bouamar H, et al. 2015. D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2. Nature Communications 6(1):7768

doi: 10.1038/ncomms8768
[33]

Baksh SC, Finley LWS. 2021. Metabolic coordination of cell fate by α-ketoglutarate-dependent dioxygenases. Trends in Cell Biology 31(1):24−36

doi: 10.1016/j.tcb.2020.09.010
[34]

Lin YC, Wu CY, Hu CH, Pai TW, Chen YR, et al. 2020. Integrated hypoxia signaling and oxidative stress in developmental neurotoxicity of benzo[a]pyrene in zebrafish embryos. Antioxidants 9(8):731

doi: 10.3390/antiox9080731
[35]

Du X, Hu H. 2021. The roles of 2-hydroxyglutarate. Frontiers in Cell and Developmental Biology 9:651317

doi: 10.3389/fcell.2021.651317
[36]

Zhan CL, Lu QY, Lee SH, Li XH, Kim JD, et al. 2024. IDH2 and GLUD1 depletion arrests embryonic development through an H4K20me3 epigenetic barrier in porcine parthenogenetic embryos. Zoological Research 45(6):1175−1187

doi: 10.24272/j.issn.2095-8137.2024.219
[37]

Fang X, Thornton C, Scheffler BE, Willett KL. 2013. Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development. Environmental Toxicology and Pharmacology 36(1):40−50

doi: 10.1016/j.etap.2013.02.014
[38]

Trujillo AS, Labeille RO, Jayarajan R, Mack D, Seemann F. 2025. Parental benzo[a]pyrene exposure impacts histone modifications in osteoblast subpopulations. Environmental Epigenetics 11(1):dvaf032

doi: 10.1093/eep/dvaf032
[39]

Kundu D, Dubey VK. 2021. Purines and pyrimidines: metabolism, function and potential as therapeutic options in neurodegenerative diseases. Current Protein & Peptide Science 22(2):170−189

doi: 10.2174/1389203721999201208200605
[40]

Li W, Hu J, Adebali O, Adar S, Yang Y, et al. 2017. Human genome-wide repair map of DNA damage caused by the cigarette smoke carcinogen benzo[a]pyrene. Proceedings of the National Academy of Sciences of the United States of America 114(26):6752−6757

doi: 10.1073/pnas.1706021114
[41]

Godschalk RWL, Verhofstad N, Verheijen M, Yauk CL, Linschooten JO, et al. 2015. Effects of benzo[a]pyrene on mouse germ cells: heritable DNA mutation, testicular cell hypomethylation and their interaction with nucleotide excision repair. Toxicology Research 4(3):718−724

doi: 10.1039/c4tx00114a
[42]

Jurecka A, Tylki-Szymanska A. 2022. Inborn errors of purine and pyrimidine metabolism: a guide to diagnosis. Molecular Genetics and Metabolism 136(3):164−176

doi: 10.1016/j.ymgme.2022.02.007
[43]

Wu G, Meininger CJ, McNeal CJ, Bazer FW, Rhoads JM. 2021. Role of L-arginine in nitric oxide synthesis and health in humans. In Amino Acids in Nutrition and Health, ed. Wu G. Volume 1332. Cham: Springer. pp. 167−187 doi: 10.1007/978-3-030-74180-8_10

[44]

Pallisco R, Lazzarino G, Bilotta G, Marroni F, Mangione R, et al. 2023. Metabolic signature of energy metabolism alterations and excess nitric oxide production in culture media correlate with low human embryo quality and unsuccessful pregnancy. International Journal of Molecular Sciences 24(1):890

doi: 10.3390/ijms24010890
[45]

Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, et al. 2021. Protective role of taurine against oxidative stress. Molecular Medicine Reports 24(2):1−19

doi: 10.3892/mmr.2021.12242
[46]

Huang M, Yang X, Zhou Y, Ge J, Davis DA, et al. 2021. Growth, serum biochemical parameters, salinity tolerance and antioxidant enzyme activity of rainbow trout (Oncorhynchus mykiss) in response to dietary taurine levels. Marine Life Science & Technology 3(4):449−462

doi: 10.1007/s42995-020-00088-2
[47]

Casagrande S, Hau M. 2019. Telomere attrition: metabolic regulation and signalling function? Biology Letters 15(3):20180885

doi: 10.1098/rsbl.2018.0885
[48]

Tobler M, Gómez-Blanco D, Hegemann A, Lapa, M., Neto JM, et al. 2022. Telomeres in ecology and evolution: a review and classification of hypotheses. Molecular Ecology 31(23):5946−5965

doi: 10.1111/mec.16308
[49]

Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, et al. 2016. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167(1):219−232.e14

doi: 10.1016/j.cell.2016.09.006
[50]

Jeremias G, Gonçalves FJM, Pereira JL, Asselman J. 2020. Prospects for incorporation of epigenetic biomarkers in human health and environmental risk assessment of chemicals. Biological Reviews of the Cambridge Philosophical Society 95(3):822−846

doi: 10.1111/brv.12589
[51]

Li P, Elowitz MB. 2019. Communication codes in developmental signaling pathways. Development 146(12):dev170977

doi: 10.1242/dev.170977
[52]

Dahlen CR, Borowicz PP, Ward AK, Caton JS, Czernik M, et al. 2021. Programming of embryonic development. International Journal of Molecular Sciences 22(21):11668

doi: 10.3390/ijms222111668
[53]

Marín-Aguilar F, Pavillard LE, Giampieri F, Bullón P, Cordero MD. 2017. Adenosine monophosphate (AMP)-activated protein kinase: a new target for nutraceutical compounds. International Journal of Molecular Sciences 18(2):288

doi: 10.3390/ijms18020288
[54]

Das DN, Naik PP, Mukhopadhyay S, Panda PK, Sinha N, et al. 2017. Elimination of dysfunctional mitochondria through mitophagy suppresses benzo[a]pyrene-induced apoptosis. Free Radical Biology and Medicine 112:452−463

doi: 10.1016/j.freeradbiomed.2017.08.020
[55]

Dunlop EA, Tee AR. 2009. Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cellular Signalling 21(6):827−835

doi: 10.1016/j.cellsig.2009.01.012
[56]

Yu JSL, Cui W. 2016. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143(17):3050−3060

doi: 10.1242/dev.137075
[57]

Andrade GM, Martínez GV, Mayoral LPC, Hernández-Huerta MT, Zenteno E, et al. 2020. Molecules and prostaglandins related to embryo tolerance. Frontiers in Immunology 11:555414

doi: 10.3389/fimmu.2020.555414
[58]

Fu C, Li Y, Xi H, Niu Z, Chen N, et al. 2022. Benzo[a]pyrene and cardiovascular diseases: an overview of pre-clinical studies focused on the underlying molecular mechanism. Frontiers in Nutrition 9:978475

doi: 10.3389/fnut.2022.978475
[59]

Sugimoto Y, Aikawa S, Inazumi T, Hirota Y. 2025. Roles of prostaglandin signaling in implantation and decidualization. Progress in Lipid Research 100:101357

doi: 10.1016/j.plipres.2025.101357
[60]

Gerger CJ, Weber LP. 2015. Comparison of the acute effects of benzo[a]pyrene on adult zebrafish (Danio rerio) cardiorespiratory function following intraperitoneal injection versus aqueous exposure. Aquatic Toxicology 165:19−30

doi: 10.1016/j.aquatox.2015.05.008
[61]

Cherr GN, Fairbairn E, Whitehead A. 2017. Impacts of petroleum-derived pollutants on fish development. Annual Review of Animal Biosciences 5(1):185−203

doi: 10.1146/annurev-animal-022516-022928
[62]

Henson PM. 2017. Cell removal: efferocytosis. Annual Review of Cell and Developmental Biology 33(1):127−144

doi: 10.1146/annurev-cellbio-111315-125315
[63]

Mehrotra P, Ravichandran KS. 2022. Drugging the efferocytosis process: concepts and opportunities. Nature Reviews Drug Discovery 21(8):601−620

doi: 10.1038/s41573-022-00470-y
[64]

Engel-Yeger B. 2021. The involvement of altered sensory modulation in neurological conditions and its relevance to neuro-rehabilitation: a narrative literature review. Disability and Rehabilitation 43:2511−2520

doi: 10.1080/09638288.2019.1699175
[65]

Laberge F, Hara TJ. 2001. Neurobiology of fish olfaction: a review. Brain Research Reviews 36(1):46−59

doi: 10.1016/S0165-0173(01)00064-9