[1]

Hormaza JI, Yamane H, Rodrigo J. 2007. Apricot. In Fruits and Nuts, ed. Kole C. Berlin, Heidelberg: Springer. pp. 171–187 doi: 10.1007/978-3-540-34533-6_7

[2]

Herrera S, Hormaza JI, Lora J, Ylla G, Rodrigo J. 2021. Molecular characterization of genetic diversity in apricot cultivars: current situation and future perspectives. Agronomy 11:1714

doi: 10.3390/agronomy11091714
[3]

Fernández-Serrano P, Tarancón P, Besada, C. 2021. Consumer information needs and sensory label design for fresh fruit packaging. An exploratory study in Spain. Foods 10:72

doi: 10.3390/foods10010072
[4]

Barba M, Ilardi V, Pasquini G. 2015. Control of pome and stone fruit virus diseases. in Advances in virus research 91:47−83

doi: 10.1016/bs.aivir.2014.11.001
[5]

Rubio M, Martínez-Gómez P, Dicenta F. 2023. Apricot breeding for multiple resistance to Plum pox virus and Apple chlorotic leaf spot virus. Scientia Horticulturae 309:111706

doi: 10.1016/j.scienta.2022.111706
[6]

Pascal T, Pfeiffer F, Kervella J. 2010. Powdery mildew resistance in the peach cultivar Pamirskij 5 is genetically linked with the Grgene for leaf color. HortScience 45:150−152

doi: 10.21273/HORTSCI.45.1.150
[7]

Taiti C, Vivaldo G, Masi E, Giordani E, Nencetti V. 2023. Postharvest monitoring and consumer choice on traditional and modern apricot cultivars. European Food Research and Technology 249:2719−2739

doi: 10.1007/s00217-023-04311-z
[8]

Zhou W, Niu Y, Ding X, Zhao S, Li Y, et al. 2020. Analysis of carotenoid content and diversity in apricots (Prunus armeniaca L.) grown in China. Food Chemistry 330:127223

doi: 10.1016/j.foodchem.2020.127223
[9]

Sharkawy SSA, Alkolaly AM, Kafsheer DA. 2023. Use of biological and chemical compounds for the integrated management of apricot powdery mildew in Egypt. Asian Journal of Agricultural and Horticultural Research 10:486−495

doi: 10.9734/ajahr/2023/v10i4288
[10]

Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, et al. 2019. Prunus genetics and applications after de novo genome sequencing: achievements and prospects. Horticulture Research 6:58

doi: 10.1038/s41438-019-0140-8
[11]

He J, Zhao X, Laroche A, Lu ZX, Liu H, et al. 2014. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Frontiers in Plant Science 5:484

doi: 10.3389/fpls.2014.00484
[12]

Gürcan K, Teber S, Ercisli S, Yilmaz KU. 2016. Genotyping by sequencing (GBS) in apricots and genetic diversity assessment with GBS-derived single-nucleotide polymorphisms (SNPs). Biochemical Genetics 54:854−885

doi: 10.1007/s10528-016-9762-9
[13]

Zhebentyayeva T, Shankar V, Scorza R, Callahan A, Ravelonandro M, et al. 2019. Genetic characterization of worldwide Prunus domestica (plum) germplasm using sequence-based genotyping. Horticulture Research 6:12

doi: 10.1038/s41438-018-0090-6
[14]

Bielenberg DG, Rauh B, Fan S, Gasic K, Abbott AG, et al. 2015. Genotyping by sequencing for SNP-based linkage map construction and QTL analysis of chilling requirement and bloom date in peach [Prunus persica (L.) Batsch]. PLoS One 10:e0139406

doi: 10.1371/journal.pone.0139406
[15]

Guajardo V, Solís S, Sagredo B, Gainza F, Muñoz C, et al. 2015. Construction of high density sweet cherry (Prunus avium L.) linkage maps using microsatellite markers and SNPs detected by genotyping-by-sequencing (GBS). PLoS One 10:e0127750

doi: 10.1371/journal.pone.0127750
[16]

Khojand S, Zeinalabedini M, Azizinezhad R, Imani A, Ghaffari MR. 2024. Genomic exploration of Iranian almond (Prunus dulcis) germplasm: decoding diversity, population structure, and linkage disequilibrium through genotyping-by-sequencing analysis. BMC Genomics 25:1101

doi: 10.1186/s12864-024-11044-0
[17]

Salazar JA, Pacheco I, Shinya P, Zapata P, Silva C, et al. 2017. Genotyping by sequencing for SNP-based linkage analysis and identification of QTLs linked to fruit quality traits in Japanese plum (Prunus salicina Lindl.). Frontiers in Plant Science 8:476

doi: 10.3389/fpls.2017.00476
[18]

Chung YS, Choi SC, Jun TH, Kim C. 2017. Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. Horticulture, Environment, and Biotechnology 58:425−431

doi: 10.1007/s13580-017-0297-8
[19]

Dondini L, Domenichini C, Dong Y, Gennari F, Bassi D, et al. 2022. Quantitative trait loci mapping and identification of candidate genes linked to fruit acidity in apricot (Prunus armeniaca L.). Frontiers in Plant Science 13:838370

doi: 10.3389/fpls.2022.838370
[20]

Socquet-Juglard D, Christen D, Devènes G, Gessler C, Duffy B, et al. 2013. Mapping architectural, phenological, and fruit quality QTLs in apricot. Plant Molecular Biology Reporter 31:387−397

doi: 10.1007/s11105-012-0511-x
[21]

Hurtado M, Romero C, Vilanova S, Abbott A, Llácer G, et al. 2002. Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.), and mapping of PPV (sharka) resistance. Theoretical and Applied Genetics 105:182−191

doi: 10.1007/s00122-002-0936-y
[22]

Lambert P, Dicenta F, Rubio M, Audergon JM. 2007. QTL analysis of resistance to sharka disease in the apricot (Prunus armeniaca L.) 'Polonais' × 'Stark Early Orange' F1 progeny. Tree Genetics & Genomes 3:299−309

doi: 10.1007/s11295-006-0069-6
[23]

Salazar JA, Batnini MA, Trifi-Farah N, Ruiz D, Martínez-Gómez P, et al. 2016. Quantitative trait loci (QTLs) identification and the transmission of resistance to powdery mildew in apricot. Euphytica 211:245−254

doi: 10.1007/s10681-016-1734-y
[24]

Kim C, Guo H, Kong W, Chandnani R, Shuang LS, et al. 2016. Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Science 242:14−22

doi: 10.1016/j.plantsci.2015.04.016
[25]

Ortuño-Hernández G, Silva M, Toledo R, Ramos H, Reis-Mendes A, et al. 2025. Nutraceutical profile characterization in apricot (Prunus armeniaca L.) fruits. Plants 14:1000

doi: 10.3390/plants14071000
[26]

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin 19:11−15

[27]

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

doi: 10.1371/journal.pone.0019379
[28]

Salazar JA, Ruiz D, Campoy JA, Tartarini S, Dondini L, et al. 2016. Inheritance of reproductive phenology traits and related QTL identification in apricot. Tree Genetics & Genomes 12:71

doi: 10.1007/s11295-016-1027-6
[29]

Ooijen V. 2018. JoinMap® 5, Software for the calculation of genetic linkage maps in experimental populations of diploid species. Kyazma BV, Wageningen, Netherlands www.kyazma.nl/index.php/JoinMap/

[30]

Campoy JA, Sun H, Goel M, Jiao WB, Folz-Donahue K, et al. 2020. Gamete binning: chromosome-level and haplotype-resolved genome assembly enabled by high-throughput single-cell sequencing of gamete genomes. Genome Biology 21:306

doi: 10.1186/s13059-020-02235-5
[31]

Canli FA. 2008. Progress in genetic mapping of Prunus species. Erciyes Ü niversities Fen Bilimleri Enstitüsü Dergisi 24:414−424

[32]

Poland JA, Rife TW. 2012. Genotyping-by-sequencing for plant breeding and genetics. The Plant Genome 5:92−102

doi: 10.3835/plantgenome2012.05.0005
[33]

Dondini L, Lain O, Vendramin V, Rizzo M, Vivoli D, et al. 2011. Identification of QTL for resistance to plum pox virus strains M and D in Lito and Harcot apricot cultivars. Molecular Breeding 27:289−299

doi: 10.1007/s11032-010-9431-3
[34]

Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, et al. 2007. Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genetics & Genomes 3:239−249

doi: 10.1007/s11295-006-0059-8
[35]

Marandel G, Salava J, Abbott A, Candresse T, Decroocq V. 2009. Quantitative trait loci meta-analysis of Plum pox virus resistance in apricot (Prunus armeniaca L.): new insights on the organization and the identification of genomic resistance factors. Molecular Plant Pathology 10:347−360

doi: 10.1111/j.1364-3703.2009.00535.x
[36]

Olukolu BA, Trainin T, Fan S, Kole C, Bielenberg DG, et al. 2009. Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819−828

doi: 10.1139/G09-050
[37]

Pilařová P, Marandel G, Decroocq V, Salava J, Krška B, et al. 2010. Quantitative trait analysis of resistance to plum pox virus in the apricot F1 progeny 'Harlayne' × 'Vestar'. Tree Genetics & Genomes 6:467−475

doi: 10.1007/s11295-009-0264-3
[38]

Socquet-Juglard D, Duffy B, Pothier JF, Christen D, Gessler C, et al. 2013. Identification of a major QTL for Xanthomonas arboricola pv. pruni resistance in apricot. Tree Genetics & Genomes 9:409−421

doi: 10.1007/s11295-012-0562-z
[39]

Soriano JM, Vera-Ruiz EM, Vilanova S, Martínez-Calvo J, Llácer G, et al. 2008. Identification and mapping of a locus conferring plum pox virus resistance in two apricot-improved linkage maps. Tree Genetics & Genomes 4:391−402

doi: 10.1007/s11295-007-0118-9
[40]

Vera Ruiz EM, Soriano JM, Romero C, Zhebentyayeva T, Terol J, et al. 2011. Narrowing down the apricot Plum pox virus resistance locus and comparative analysis with the peach genome syntenic region. Molecular Plant Pathology 12:535−547

doi: 10.1111/j.1364-3703.2010.00691.x
[41]

Pina A, Irisarri P, Errea P, Zhebentyayeva T. 2021. Mapping quantitative trait loci associated with graft (In)compatibility in apricot (Prunus armeniaca L.). Frontiers in Plant Science 12:622906

doi: 10.3389/fpls.2021.622906
[42]

Zhang Q, Liu J, Liu W, Liu N, Zhang Y, et al. 2022. Construction of a high-density genetic map and identification of quantitative trait loci linked to fruit quality traits in apricots using specific-locus amplified fragment sequencing. Frontiers in Plant Science 13:798700

doi: 10.3389/fpls.2022.798700
[43]

Carrasco B, González M, Gebauer M, García-González R, Maldonado J, et al. 2018. Construction of a highly saturated linkage map in Japanese plum (Prunus salicina L.) using GBS for SNP marker calling. PLoS One 13:e0208032

doi: 10.1371/journal.pone.0208032
[44]

Baccichet I, Chiozzotto R, Tura D, Tagliabue AG, Tartarini S, et al. 2025. Dissection of acidity-related traits in an apricot (Prunus armeniaca L.) germplasm collection revealed the genetic architecture of organic acids content and profile. Fruit Research 5:e005

doi: 10.48130/frures-0024-0040
[45]

Marimon N, Luque J, Arús P, Eduardo I. 2020. Fine mapping and identification of candidate genes for the peach powdery mildew resistance gene Vr3. Horticulture Research 7:175

doi: 10.1038/s41438-020-00396-9
[46]

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, et al. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15:573−581

doi: 10.1016/j.tplants.2010.06.005
[47]

Yan H, Pei X, Zhang H, Li X, Zhang X, et al. 2021. MYB-mediated regulation of anthocyanin biosynthesis. International Journal of Molecular Sciences 22:3103

doi: 10.3390/ijms22063103
[48]

Fraser PD, Bramley PM. 2004. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research 43:228−265

doi: 10.1016/j.plipres.2003.10.002
[49]

Babu MA, Srinivasan R, Subramanian P, Kodiveri Muthukaliannan G. 2021. RNAi silenced ζ-carotene desaturase developed variegated tomato transformants with increased phytoene content. Plant Growth Regulation 93:189−201

doi: 10.1007/s10725-020-00678-1
[50]

Ambawat S, Sharma P, Yadav NR, Yadav RC. 2013. MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants 19:307−321

doi: 10.1007/s12298-013-0179-1
[51]

Ishizaki K, Larson TR, Schauer N, Fernie AR, Graham IA, et al. 2005. The critical role of Arabidopsis electron-transfer flavoprotein: ubiquinone oxidoreductase during dark-induced starvation. The Plant Cell 17:2587−2600

doi: 10.1105/tpc.105.035162
[52]

Araújo WL, Ishizaki K, Nunes-Nesi A, Tohge T, Larson TR, et al. 2011. Analysis of a range of catabolic mutants provides evidence that phytanoyl-coenzyme a does not act as a substrate of the electron-transfer flavoprotein/electron-transfer flavoprotein: ubiquinone oxidoreductase complex in Arabidopsis during dark-induced senescence. Plant Physiology 157:55−69

doi: 10.1104/pp.111.182188
[53]

Xi X, Zong Y, Li S, Cao D, Sun X, et al. 2019. Transcriptome analysis clarified genes involved in betalain biosynthesis in the fruit of red pitayas (Hylocereus costaricensis). Molecules 24:445

doi: 10.3390/molecules24030445
[54]

Li X, Zhu L, Song J, Wang W, Kuang T, et al. 2023. LHCA4 residues surrounding red chlorophylls allow for fine-tuning of the spectral region for photosynthesis in Arabidopsis thaliana. Frontiers in Plant Science 13:1118189

doi: 10.3389/fpls.2022.1118189
[55]

Brandt U, Zickermann V. 2020. NADH-ubiquinone oxidoreductase (Complex I). In Encyclopedia of Biophysics, eds. Roberts C, Watts A, European Biophysical Societies. Berlin, Heidelberg: Springer. pp. 1–4 doi: 10.1007/978-3-642-35943-9_26-1

[56]

Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL. 2009. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329−1344

doi: 10.1016/j.phytochem.2009.08.006
[57]

Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany 64:1451−1469

doi: 10.1093/jxb/ert035
[58]

Huang XY, Wang CK, Zhao YW, Sun CH, Hu DG. 2021. Mechanisms and regulation of organic acid accumulation in plant vacuoles. Horticulture Research 8:227

doi: 10.1038/s41438-021-00702-z
[59]

Huang XY, Xiang Y, Zhao YW, Wang CK, Wang JH, et al. 2023. Regulation of a vacuolar proton-pumping P-ATPase MdPH5 by MdMYB73 and its role in malate accumulation and vacuolar acidification. aBIOTECH 4:303−314

doi: 10.1007/s42994-023-00115-7
[60]

Decker D, Kleczkowski LA. 2019. UDP-sugar producing pyrophosphorylases: distinct and essential enzymes with overlapping substrate specificities, providing de novo precursors for glycosylation reactions. Frontiers in Plant Science 9:1822

doi: 10.3389/fpls.2018.01822
[61]

Zhang W. 2025. An overview of UDP-glucose pyrophosphorylase in plants. Tropical Plant Biology 18:10

doi: 10.1007/s12042-024-09379-9
[62]

Bellin L, Scherer V, Dörfer E, Lau A, Vicente AM, et al. 2021. Cytosolic CTP production limits the establishment of photosynthesis in Arabidopsis. Frontiers in Plant Science 12:789189

doi: 10.3389/fpls.2021.789189
[63]

Yu B, Liu N, Tang S, Qin T, Huang J. 2022. Roles of glutamate receptor-like channels (GLRs) in plant growth and response to environmental stimuli. Plants 11:3450

doi: 10.3390/plants11243450
[64]

Wang H, Wang C, Fan W, Yang J, Appelhagen I, et al. 2018. A novel glycosyltransferase catalyses the transfer of glucose to glucosylated anthocyanins in purple sweet potato. Journal of Experimental Botany 69:5444−5459

doi: 10.1093/jxb/ery305
[65]

Ren Y, Liao S, Xu Y. 2023. An update on sugar allocation and accumulation in fruits. Plant Physiology 193:888−899

doi: 10.1093/plphys/kiad294
[66]

Liu J, Huang C, Xing D, Cui S, Huang Y, et al. 2024. The genomic database of fruits: a comprehensive fruit information database for comparative and functional genomic studies. Agriculture Communications 2(2):100041

doi: 10.1016/j.agrcom.2024.100041