[1]

Falkowski PG, Fenchel T, Delong EF. 2008. The microbial engines that drive earth's biogeochemical cycles. Science 320:1034−1039

doi: 10.1126/science.1153213
[2]

Schönheit P, Buckel W, Martin WF. 2016. On the origin of heterotrophy. Trends in Microbiology 24:12−25

doi: 10.1016/j.tim.2015.10.003
[3]

Croce R, van Amerongen H. 2014. Natural strategies for photosynthetic light harvesting. Nature Chemical Biology 10:492−501

doi: 10.1038/nchembio.1555
[4]

Schiffries CM, Mangum AJ, Mays JL, Hoon-Starr M, Hazen RM. 2019. The deep carbon observatory: a ten-year quest to study carbon in Earth. Engineering 5:372−378

doi: 10.1016/j.eng.2019.03.004
[5]

Lu A, Li Y, Jin S, Wang X, Wu XL, et al. 2012. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nature Communications 3:768

doi: 10.1038/ncomms1768
[6]

D'Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, et al. 2004. Distributions of microbial activities in deep subseafloor sediments. Science 306:2216−2221

doi: 10.1126/science.1101155
[7]

Jørgensen BB, D'Hondt S. 2006. A starving majority deep beneath the seafloor. Science 314:932−934

doi: 10.1126/science.1133796
[8]

Dumont S, Custódio S, Petrosino S, Thomas AM, Sottili G. 2023. Chapter 14 – Tides, earthquakes, and volcanic eruptions. In A Journey Through Tides, eds. Green M, Duarte JC. Amsterdam: Elsevier. pp. 333–364 doi: 10.1016/b978-0-323-90851-1.00008-x

[9]

Orhan K, Mayerle R. 2017. Assessment of the tidal stream power potential and impacts of tidal current turbines in the Strait of Larantuka, Indonesia. Energy Procedia 125:230−239

doi: 10.1016/j.egypro.2017.08.199
[10]

Yang W, Wei H, Zhao L. 2017. Observations of tidal straining within two different ocean environments in the east China sea: stratification and near-bottom turbulence. Journal of Geophysical Research: Oceans 122:8876−8893

doi: 10.1002/2017JC012924
[11]

Dufrêne YF, Persat A. 2020. Mechanomicrobiology: how bacteria sense and respond to forces. Nature Reviews Microbiology 18:227−240

doi: 10.1038/s41579-019-0314-2
[12]

He H, Wu X, Xian H, Zhu J, Yang Y, et al. 2021. An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis. Nature Communications 12:6611

doi: 10.1038/s41467-021-26916-2
[13]

He H, Wu X, Zhu J, Lin M, Lv Y, et al. 2023. A mineral-based origin of Earth's initial hydrogen peroxide and molecular oxygen. Proceedings of the National Academy of Sciences of the United States of America 120:e2221984120

doi: 10.1073/pnas.2221984120
[14]

Wang X, Jia Y, Wang Y, Xu X, Qin L, et al. 2024. Natural piezoelectric tourmaline mineral for piezocatalytic decomposition of organic dyes under vibration. Journal of the American Ceramic Society 107:1682−1690

doi: 10.1111/jace.19234
[15]

Ivanova EP, Linklater DP, Werner M, Baulin VA, Xu X, et al. 2020. The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces. Proceedings of the National Academy of Sciences of the United States of America 117:12598−12605

doi: 10.1073/pnas.1916680117
[16]

Ye J, Ren G, Liu L, Zhang D, Zeng RJ, et al. 2024. Wastewater denitrification driven by mechanical energy through cellular piezo-sensitization. Nature Water 2:531−540

doi: 10.1038/s44221-024-00253-2
[17]

Ren G, Ye J, Liu L, Hu A, Nealson KH, et al. 2025. Mechanical energy drives the growth and carbon fixation of electroactive microorganisms. Engineering 47:194−203

doi: 10.1016/j.eng.2024.08.006
[18]

Tremblay PL, Xu M, Joya MB, Wang Y, He C, et al. 2025. A biopiezocatalyst harnessing mechanical energy to enhance bioplastic production from CO2 and organic carbon. Nature Communications 16:8141

doi: 10.1038/s41467-025-63576-y
[19]

Guo M, Li Y, Qiao S. 2025. Bacteria-piezocatalyst for NO3 reduction to NH4+ driven by hydraulic kinetic energy. Water Research 286:124292

doi: 10.1016/j.watres.2025.124292
[20]

Wu X, Zhu J, Yang H, Yang Y, Lin X, et al. 2025. Crustal faulting drives biological redox cycling in the deep subsurface. Science Advances 11(29):eadx5372

doi: 10.1126/sciadv.adx5372
[21]

Gudkov SV, Pustovoy VI, Sarimov RM, Serov DA, Simakin AV, et al. 2025. Diversity of effects of mechanical influences on living systems and aqueous solutions. International Journal of Molecular Sciences 26:5556

doi: 10.3390/ijms26125556
[22]

Helmbrecht V, Reichelt R, Grohmann D, Orsi WD. 2025. Simulated early earth geochemistry fuels a hydrogen-dependent primordial metabolism. Nature Ecology & Evolution 9:769−778

doi: 10.1038/s41559-025-02676-w
[23]

Wimalaratna YP, Hassan A, Afrouzi HN, Mehranzamir K, Ahmed J, et al. 2022. Comprehensive review on the feasibility of developing wave energy as a renewable energy resource in Australia. Cleaner Energy Systems 3:100021

doi: 10.1016/j.cles.2022.100021
[24]

Pu X, Wu Y, Liu J, Wu B. 2024. 3D bioprinting of microbial-based living materials for advanced energy and environmental applications. Chem & Bio Engineering 7:568−592

doi: 10.1021/cbe.4c00024
[25]

Toffol G, Pennacchioni G, Menegon L, Wallis D, Faccenda M, et al. 2024. On-fault earthquake energy density partitioning from shocked garnet in an exhumed seismic midcrustal fault. Science Advances 10:eadi8533

doi: 10.1126/sciadv.adi8533
[26]

You H. 2022. Piezo-catalysis and pyro-catalysis for hydrogen production and pollutant treatment. Thesis. Hong Kong Polytechnic University, Hong Kong, China. https://theses.lib.polyu.edu.hk/handle/200/11687

[27]

Kolb E, Legué V, Bogeat-Triboulot MB. 2017. Physical root–soil interactions. Physical Biology 14:65004

doi: 10.1088/1478-3975/aa90dd
[28]

Diao Y, Hu Q, Liu Y, Zeng RJ, Zhou S, et al. 2025. Natural electricity production from soil-air water exchange: a wide and untapped energy. Nano Energy 135:110619

doi: 10.1016/j.nanoen.2024.110619
[29]

Li X, Luo J, Han K, Shi X, Ren Z, et al. 2022. Stimulation of ambient energy generated electric field on crop plant growth. Nature Food 3:133−142

doi: 10.1038/s43016-021-00449-9
[30]

Curie J, Curie P. 1880. Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de la Société Minéralogique de France 3(4):90−93 (in France)

doi: 10.3406/bulmi.1880.1564
[31]

Zhu M, Yi Z, Yang B, Lee C. 2021. Making use of nanoenergy from human – nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 36:101016

doi: 10.1016/j.nantod.2020.101016
[32]

Jia P, Li J, Huang H. 2024. Piezocatalysts and piezo-photocatalysts: from material design to diverse applications. Advanced Functional Materials 34:2407309

doi: 10.1002/adfm.202407309
[33]

Hu Y, Yang W, Ma Y, Qiu Y, Wei W, et al. 2025. Solid-liquid interface charge transfer for generation of H2O2 and energy. Nature Communications 16:1692

doi: 10.1038/s41467-025-57082-4
[34]

Michalchuk AAL, Boldyreva EV, Belenguer AM, Emmerling F, Boldyrev VV. 2021. Tribochemistry, mechanical alloying, mechanochemistry: what is in a name? Frontiers in Chemistry 9:685789

doi: 10.3389/fchem.2021.685789
[35]

Abba M, Shafiu S, Ibrahim B, Aisha M, Aliyu H, et al. 2024. Understanding the impact of lead contamination on microbial diversity: a comprehensive review. International Journal of Research Publication and Reviews 5(7):1119−1130

doi: 10.55248/gengpi.5.0724.1721
[36]

Mitra A, Chatterjee S, Kataki S, Rastogi RP, Gupta DK. 2021. Bacterial tolerance strategies against lead toxicity and their relevance in bioremediation application. Environmental Science and Pollution Research 28:14271−14284

doi: 10.1007/s11356-021-12583-9
[37]

Zumft WG, Kroneck PMH. 2007. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Advances in Microbial Physiology 52:107−227

doi: 10.1016/S0065-2911(06)52003-X
[38]

Wu L, Bao D, Liao H, Yan M, Ge Y, et al. 2025. Pore-scale mass transfer heterogeneity shapes nutrient accessibility and functional assembly in porous microbial ecosystems. The ISME Journal 19:wraf205

doi: 10.1093/ismejo/wraf205
[39]

Meisak D, Kinka M, Plyushch A, Macutkevič J, Zarkov A, et al. 2023. Piezoelectric nanogenerators based on BaTiO3/PDMS composites for high-frequency applications. ACS Omega 8:13911−13919

doi: 10.1021/acsomega.3c00321
[40]

Meng L, Xie L, Hirose Y, Nishiuchi T, Yoshida N. 2022. Reduced graphene oxide increases cells with enlarged outer membrane of Citrifermentans bremense and exopolysaccharides secretion. Biosensors and Bioelectronics 218:114754

doi: 10.1016/j.bios.2022.114754
[41]

Zhou X, Kang F, Qu X, Fu H, Liu J, et al. 2020. Probing extracellular reduction mechanisms of Bacillus subtilis and Escherichia coli with nitroaromatic compounds. Science of the Total Environment 724:138291

doi: 10.1016/j.scitotenv.2020.138291
[42]

Lovley DR, Holmes DE. 2022. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nature Reviews Microbiology 20:5−19

doi: 10.1038/s41579-021-00597-6
[43]

Han HX, Tian LJ, Liu DF, Yu HQ, Sheng GP, et al. 2022. Reversing electron transfer chain for light-driven hydrogen production in biotic–abiotic hybrid systems. Journal of the American Chemical Society 144:6434−6441

doi: 10.1021/jacs.2c00934
[44]

Xie Y, Erşan S, Guan X, Wang J, Sha J, et al. 2023. Unexpected metabolic rewiring of CO2 fixation in H2-mediated materials–biology hybrids. Proceedings of the National Academy of Sciences of the United States of America 120:e2308373120

doi: 10.1073/pnas.2308373120
[45]

Hoehler TM, Mankel DJ, Girguis PR, McCollom TM, Kiang NY, et al. 2023. The metabolic rate of the biosphere and its components. Proceedings of the National Academy of Sciences of the United States of America 120:e2303764120

doi: 10.1073/pnas.2303764120
[46]

Hoehler TM, Jørgensen BB. 2013. Microbial life under extreme energy limitation. Nature Reviews Microbiology 11:83−94

doi: 10.1038/nrmicro2939
[47]

Ren Z, Chen F, Zhao Q, Zhao G, Li H, et al. 2023. Efficient CO2 reduction to reveal the piezocatalytic mechanism: from displacement current to active sites. Applied Catalysis B: Environmental 320:122007

doi: 10.1016/j.apcatb.2022.122007
[48]

Shi L, Dong H, Reguera G, Beyenal H, Lu A, et al. 2016. Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology 14:651−662

doi: 10.1038/nrmicro.2016.93
[49]

Qian X, Qiu J, Hu B, Yao J, Zuo M, et al. 2025. Metal-like conductivity in acid-treated PEDOT:PSS films: surpassing 15,000 S/cm. ACS Applied Materials & Interfaces 17:17164−17178

doi: 10.1021/acsami.4c19958
[50]

Deng Z, Huang D, He Q, Chassagne C. 2022. Review of the action of organic matter on mineral sediment flocculation. Frontiers in Earth Science 10:965919

doi: 10.3389/feart.2022.965919
[51]

Liu XY, Ma JY, Liu MY, Duan JL, Wang Y, et al. 2025. Light-independent Fe3O4Methanosarcina acetivorans biohybrid enhances nitrogen fixation and methanogenesis. Journal of the American Chemical Society 147:7694−7702

doi: 10.1021/jacs.4c17259
[52]

Tu S, Guo Y, Zhang Y, Hu C, Zhang T, et al. 2020. Piezocatalysis and piezo-photocatalysis: catalysts classification and modification strategy, reaction mechanism, and practical application. Advanced Functional Materials 30:2005158

doi: 10.1002/adfm.202005158
[53]

Parkes RJ, Berlendis S, Roussel EG, Bahruji H, Webster G, et al. 2019. Rock-crushing derived hydrogen directly supports a methanogenic community: significance for the deep biosphere. Environmental Microbiology Reports 11:165−172

doi: 10.1111/1758-2229.12723
[54]

Wu M, Yao R, Jin C, Xu Y, Xu J, et al. 2025. Significantly enhanced piezoelectric properties of BaTiO3-based ceramics with unchanged curie temperature via local chemical inhomogeneity. Chemical Engineering Journal 518:164844

doi: 10.1016/j.cej.2025.164844
[55]

Pan X, Chen D, Pan B, Huang X, Yang K, et al. 2025. Evolution and prospects of Earth system models: challenges and opportunities. Earth-Science Reviews 260:104986

doi: 10.1016/j.earscirev.2024.104986