| [1] |
Falkowski PG, Fenchel T, Delong EF. 2008. The microbial engines that drive earth's biogeochemical cycles. |
| [2] |
Schönheit P, Buckel W, Martin WF. 2016. On the origin of heterotrophy. |
| [3] |
Croce R, van Amerongen H. 2014. Natural strategies for photosynthetic light harvesting. |
| [4] |
Schiffries CM, Mangum AJ, Mays JL, Hoon-Starr M, Hazen RM. 2019. The deep carbon observatory: a ten-year quest to study carbon in Earth. |
| [5] |
Lu A, Li Y, Jin S, Wang X, Wu XL, et al. 2012. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. |
| [6] |
D'Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, et al. 2004. Distributions of microbial activities in deep subseafloor sediments. |
| [7] |
Jørgensen BB, D'Hondt S. 2006. A starving majority deep beneath the seafloor. |
| [8] |
Dumont S, Custódio S, Petrosino S, Thomas AM, Sottili G. 2023. Chapter 14 – Tides, earthquakes, and volcanic eruptions. In A Journey Through Tides, eds. Green M, Duarte JC. Amsterdam: Elsevier. pp. 333–364 doi: 10.1016/b978-0-323-90851-1.00008-x |
| [9] |
Orhan K, Mayerle R. 2017. Assessment of the tidal stream power potential and impacts of tidal current turbines in the Strait of Larantuka, Indonesia. |
| [10] |
Yang W, Wei H, Zhao L. 2017. Observations of tidal straining within two different ocean environments in the east China sea: stratification and near-bottom turbulence. |
| [11] |
Dufrêne YF, Persat A. 2020. Mechanomicrobiology: how bacteria sense and respond to forces. |
| [12] |
He H, Wu X, Xian H, Zhu J, Yang Y, et al. 2021. An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis. |
| [13] |
He H, Wu X, Zhu J, Lin M, Lv Y, et al. 2023. A mineral-based origin of Earth's initial hydrogen peroxide and molecular oxygen. |
| [14] |
Wang X, Jia Y, Wang Y, Xu X, Qin L, et al. 2024. Natural piezoelectric tourmaline mineral for piezocatalytic decomposition of organic dyes under vibration. |
| [15] |
Ivanova EP, Linklater DP, Werner M, Baulin VA, Xu X, et al. 2020. The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces. |
| [16] |
Ye J, Ren G, Liu L, Zhang D, Zeng RJ, et al. 2024. Wastewater denitrification driven by mechanical energy through cellular piezo-sensitization. |
| [17] |
Ren G, Ye J, Liu L, Hu A, Nealson KH, et al. 2025. Mechanical energy drives the growth and carbon fixation of electroactive microorganisms. |
| [18] |
Tremblay PL, Xu M, Joya MB, Wang Y, He C, et al. 2025. A biopiezocatalyst harnessing mechanical energy to enhance bioplastic production from CO2 and organic carbon. |
| [19] |
Guo M, Li Y, Qiao S. 2025. Bacteria-piezocatalyst for NO3− reduction to NH4+ driven by hydraulic kinetic energy. |
| [20] |
Wu X, Zhu J, Yang H, Yang Y, Lin X, et al. 2025. Crustal faulting drives biological redox cycling in the deep subsurface. |
| [21] |
Gudkov SV, Pustovoy VI, Sarimov RM, Serov DA, Simakin AV, et al. 2025. Diversity of effects of mechanical influences on living systems and aqueous solutions. |
| [22] |
Helmbrecht V, Reichelt R, Grohmann D, Orsi WD. 2025. Simulated early earth geochemistry fuels a hydrogen-dependent primordial metabolism. |
| [23] |
Wimalaratna YP, Hassan A, Afrouzi HN, Mehranzamir K, Ahmed J, et al. 2022. Comprehensive review on the feasibility of developing wave energy as a renewable energy resource in Australia. |
| [24] |
Pu X, Wu Y, Liu J, Wu B. 2024. 3D bioprinting of microbial-based living materials for advanced energy and environmental applications. |
| [25] |
Toffol G, Pennacchioni G, Menegon L, Wallis D, Faccenda M, et al. 2024. On-fault earthquake energy density partitioning from shocked garnet in an exhumed seismic midcrustal fault. |
| [26] |
You H. 2022. Piezo-catalysis and pyro-catalysis for hydrogen production and pollutant treatment. Thesis. Hong Kong Polytechnic University, Hong Kong, China. https://theses.lib.polyu.edu.hk/handle/200/11687 |
| [27] |
Kolb E, Legué V, Bogeat-Triboulot MB. 2017. Physical root–soil interactions. |
| [28] |
Diao Y, Hu Q, Liu Y, Zeng RJ, Zhou S, et al. 2025. Natural electricity production from soil-air water exchange: a wide and untapped energy. |
| [29] |
Li X, Luo J, Han K, Shi X, Ren Z, et al. 2022. Stimulation of ambient energy generated electric field on crop plant growth. |
| [30] |
Curie J, Curie P. 1880. Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. |
| [31] |
Zhu M, Yi Z, Yang B, Lee C. 2021. Making use of nanoenergy from human – nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. |
| [32] |
Jia P, Li J, Huang H. 2024. Piezocatalysts and piezo-photocatalysts: from material design to diverse applications. |
| [33] |
Hu Y, Yang W, Ma Y, Qiu Y, Wei W, et al. 2025. Solid-liquid interface charge transfer for generation of H2O2 and energy. |
| [34] |
Michalchuk AAL, Boldyreva EV, Belenguer AM, Emmerling F, Boldyrev VV. 2021. Tribochemistry, mechanical alloying, mechanochemistry: what is in a name? |
| [35] |
Abba M, Shafiu S, Ibrahim B, Aisha M, Aliyu H, et al. 2024. Understanding the impact of lead contamination on microbial diversity: a comprehensive review. |
| [36] |
Mitra A, Chatterjee S, Kataki S, Rastogi RP, Gupta DK. 2021. Bacterial tolerance strategies against lead toxicity and their relevance in bioremediation application. |
| [37] |
Zumft WG, Kroneck PMH. 2007. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. |
| [38] |
Wu L, Bao D, Liao H, Yan M, Ge Y, et al. 2025. Pore-scale mass transfer heterogeneity shapes nutrient accessibility and functional assembly in porous microbial ecosystems. |
| [39] |
Meisak D, Kinka M, Plyushch A, Macutkevič J, Zarkov A, et al. 2023. Piezoelectric nanogenerators based on BaTiO3/PDMS composites for high-frequency applications. |
| [40] |
Meng L, Xie L, Hirose Y, Nishiuchi T, Yoshida N. 2022. Reduced graphene oxide increases cells with enlarged outer membrane of Citrifermentans bremense and exopolysaccharides secretion. |
| [41] |
Zhou X, Kang F, Qu X, Fu H, Liu J, et al. 2020. Probing extracellular reduction mechanisms of Bacillus subtilis and Escherichia coli with nitroaromatic compounds. |
| [42] |
Lovley DR, Holmes DE. 2022. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. |
| [43] |
Han HX, Tian LJ, Liu DF, Yu HQ, Sheng GP, et al. 2022. Reversing electron transfer chain for light-driven hydrogen production in biotic–abiotic hybrid systems. |
| [44] |
Xie Y, Erşan S, Guan X, Wang J, Sha J, et al. 2023. Unexpected metabolic rewiring of CO2 fixation in H2-mediated materials–biology hybrids. |
| [45] |
Hoehler TM, Mankel DJ, Girguis PR, McCollom TM, Kiang NY, et al. 2023. The metabolic rate of the biosphere and its components. |
| [46] |
Hoehler TM, Jørgensen BB. 2013. Microbial life under extreme energy limitation. |
| [47] |
Ren Z, Chen F, Zhao Q, Zhao G, Li H, et al. 2023. Efficient CO2 reduction to reveal the piezocatalytic mechanism: from displacement current to active sites. |
| [48] |
Shi L, Dong H, Reguera G, Beyenal H, Lu A, et al. 2016. Extracellular electron transfer mechanisms between microorganisms and minerals. |
| [49] |
Qian X, Qiu J, Hu B, Yao J, Zuo M, et al. 2025. Metal-like conductivity in acid-treated PEDOT:PSS films: surpassing 15,000 S/cm. |
| [50] |
Deng Z, Huang D, He Q, Chassagne C. 2022. Review of the action of organic matter on mineral sediment flocculation. |
| [51] |
Liu XY, Ma JY, Liu MY, Duan JL, Wang Y, et al. 2025. Light-independent Fe3O4–Methanosarcina acetivorans biohybrid enhances nitrogen fixation and methanogenesis. |
| [52] |
Tu S, Guo Y, Zhang Y, Hu C, Zhang T, et al. 2020. Piezocatalysis and piezo-photocatalysis: catalysts classification and modification strategy, reaction mechanism, and practical application. |
| [53] |
Parkes RJ, Berlendis S, Roussel EG, Bahruji H, Webster G, et al. 2019. Rock-crushing derived hydrogen directly supports a methanogenic community: significance for the deep biosphere. |
| [54] |
Wu M, Yao R, Jin C, Xu Y, Xu J, et al. 2025. Significantly enhanced piezoelectric properties of BaTiO3-based ceramics with unchanged curie temperature via local chemical inhomogeneity. |
| [55] |
Pan X, Chen D, Pan B, Huang X, Yang K, et al. 2025. Evolution and prospects of Earth system models: challenges and opportunities. |