[1]

Govindasamy P, Muthusamy SK, Bagavathiannan M, Mowrer J, Jagannadham PTK, et al. 2023. Nitrogen use efficiency—a key to enhance crop productivity under a changing climate. Frontiers in Plant Science 14:1121073

doi: 10.3389/fpls.2023.1121073
[2]

Ludemann CI, Wanner N, Chivenge P, Dobermann A, Einarsson R, et al. 2024. A global FAOSTAT reference database of cropland nutrient budgets and nutrient use efficiency (1961–2020): nitrogen, phosphorus and potassium. Earth System Science Data 16(1):525−541

doi: 10.5194/essd-16-525-2024
[3]

Yu Z, Liu J, Kattel G. 2022. Historical nitrogen fertilizer use in China from 1952 to 2018. Earth System Science Data 14(11):5179−5194

doi: 10.5194/essd-14-5179-2022
[4]

Farooq MS, Wang X, Uzair M, Fatima H, Fiaz S, et al. 2022. Recent trends in nitrogen cycle and eco-efficient nitrogen management strategies in aerobic rice system. Frontiers in Plant Science 13:960641

doi: 10.3389/fpls.2022.960641
[5]

Wang R, Zhang J, Cai C, Wang S. 2023. Mechanism of nitrogen loss driven by soil and water erosion in water source areas. Journal of Forestry Research 34(6):1985−1995

doi: 10.1007/s11676-023-01640-3
[6]

Guo C, Liu X, He X. 2022. A global meta-analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. Science of The Total Environment 831:154982

doi: 10.1016/j.scitotenv.2022.154982
[7]

Shen N, Tan J, Wang W, Xue W, Wang Y, et al. 2024. Long-term changes of methane emissions from rice cultivation during 2000–2060 in China: trends, driving factors, predictions and policy implications. Environment International 191:108958

doi: 10.1016/j.envint.2024.108958
[8]

Colina M, Meerhoff M, Pérez G, Veraart AJ, Bodelier P, et al. 2021. Trophic and non-trophic effects of fish and macroinvertebrates on carbon emissions. Freshwater Biology 66(9):1831−1845

doi: 10.1111/fwb.13795
[9]

Liu YH, Huang JN, Wen B, Gao JZ, Chen ZZ. 2024. Comprehensive assessment of three crayfish culture modes: from production performance to environmental sustainability. Science of The Total Environment 954:176470

doi: 10.1016/j.scitotenv.2024.176470
[10]

Yan X, Shan J, Wang X, Wang B, Liu SJ, et al. 2025. Uncovering the soil nitrogen cycle from microbial pathways to global sustainability. Nitrogen Cycling 1(1):e002

doi: 10.48130/nc-0025-0005
[11]

Sun G, Zhang Z, Xiong S, Guo X, Han Y, et al. 2022. Mitigating greenhouse gas emissions and ammonia volatilization from cotton fields by integrating cover crops with reduced use of nitrogen fertilizer. Agriculture, Ecosystems & Environment 332:107946

doi: 10.1016/j.agee.2022.107946
[12]

Park JR, Jang YH, Kim EG, Lee GS, Kim KM, et al. 2023. Nitrogen fertilization causes changes in agricultural characteristics and gas emissions in rice field. Sustainability 15(4):3336

doi: 10.3390/su15043336
[13]

Ge L, Sun Y, Li Y, Wang L, Guo G, et al. 2023. Ecosystem sustainability of rice and aquatic animal co-culture systems and a synthesis of its underlying mechanisms. Science of The Total Environment 880:163314

doi: 10.1016/j.scitotenv.2023.163314
[14]

Bashir MA, Liu J, Geng Y, Wang H, Pan J, et al. 2020. Co-culture of rice and aquatic animals: an integrated system to achieve production and environmental sustainability. Journal of Cleaner Production 249:119310

doi: 10.1016/j.jclepro.2019.119310
[15]

Li W, He Z, Wu L, Liu S, Luo L, et al. 2022. Impacts of co-culture of rice and aquatic animals on rice yield and quality: a meta-analysis of field trials. Field Crops Research 280:108468

doi: 10.1016/j.fcr.2022.108468
[16]

Wang C, Shi X, Qi Z, Xiao Y, Zhao J, et al. 2023. How does rice-animal co-culture system affect rice yield and greenhouse gas? A meta-analysis. Plant and Soil 493(1-2):325−340

doi: 10.1007/s11104-023-06233-x
[17]

Li P, Wu G, Li Y, Hu C, Ge L, et al. 2022. Long-term rice-crayfish-turtle co-culture maintains high crop yields by improving soil health and increasing soil microbial community stability. Geoderma 413:115745

doi: 10.1016/j.geoderma.2022.115745
[18]

Wang W, Li M, Chen P, Yuan S, Wang K, et al. 2025. Role of nitrogen cycling functional genes and their key influencing factors in eutrophic aquatic ecosystems. Environmental Reviews 33:1−10

doi: 10.1139/er-2024-0100
[19]

Chen K, Yu M, Cheng B, Cao C, Jiang Y. 2025. Co-cultivation of rice and aquatic animals: improving soil fertility and providing more rice in China. Soil and Tillage Research 251:106526

doi: 10.1016/j.still.2025.106526
[20]

Zhao L, Guo L, Hu L, Zhang T, Dai R, et al. 2025. Mechanisms underlying the sustainability of yields and soil nitrogen in the rice-fish system. Chinese Science Bulletin 70(28−29):4929−4942

doi: 10.1360/TB-2024-1319
[21]

Huang M, Zhou Y, Guo J, Dong X, An D, et al. 2024. Co-culture of rice and aquatic animals mitigates greenhouse gas emissions from rice paddies. Aquaculture International 32(2):1785−1799

doi: 10.1007/s10499-023-01243-z
[22]

Zhang Y, Chen L, Wang M, Lu J, Zhang H, et al. 2024. Evaluating micro-nano bubbles coupled with rice-crayfish co-culture systems: a field study promoting sustainable rice production intensification. Science of The Total Environment 933:173162

doi: 10.1016/j.scitotenv.2024.173162
[23]

Zhang M, Jiang R, Yang X, Wen S, Hua Z, et al. 2025. Developing native fish to control Spirogyra in paddy fields for improving the growth, nutrient uptake, and physiological characteristics of Oryza sativa L. Agriculture 15(18):1990

doi: 10.3390/agriculture15181990
[24]

Liu D, Feng Q, Zhang J, Zhang K, Tian J, et al. 2021. Ecosystem services analysis for sustainable agriculture expansion: rice-fish co-culture system breaking through the Hu Line. Ecological Indicators 133:108385

doi: 10.1016/j.ecolind.2021.108385
[25]

Zhao M, Liu J, Zhang C, Liang X, Qian E, et al. 2021. Development and applications of an in situ probe for multi-element high-resolution measurement at soil/sediment-water interface and rice rhizosphere. Agronomy 11(12):2383

doi: 10.3390/agronomy11122383
[26]

Huang J, Li J, Zhou W, Cheng Y, Li J. 2023. Effect of different rice transplanting patterns on microbial community in water, sediment, and Procambarus clarkii intestine in rice-crayfish system. Frontiers in Microbiology 14:1233815

doi: 10.3389/fmicb.2023.1233815
[27]

Farooq MS, Uzair M, Maqbool Z, Fiaz S, Yousuf M, et al. 2022. Improving nitrogen use efficiency in aerobic rice based on insights into the ecophysiology of archaeal and bacterial ammonia oxidizers. Frontiers in Plant Science 13:913204

doi: 10.3389/fpls.2022.913204
[28]

Li Q, Xie L, Lin S, Cheng X, Liu Q, et al. 2025. Effects of rice–fish coculture on greenhouse gas emissions: a case study in terraced paddy fields of Qingtian, China. Agronomy 15(6):1480

doi: 10.3390/agronomy15061480
[29]

Mihrete TB, Mihretu FB. 2025. Crop diversification for ensuring sustainable agriculture, risk management and food security. Global Challenges 9(2):2400267

doi: 10.1002/gch2.202400267
[30]

Gui X, Wang W, Qin D, Luo H, Qin F, et al. 2025. Revisiting the microbial nitrogen-cycling network: bibliometric analysis and recent advances. Environmental Earth Sciences 84(16):484

doi: 10.1007/s12665-025-12481-0
[31]

Pan X, Lv J, Dyck M, He H. 2021. Bibliometric analysis of soil nutrient research between 1992 and 2020. Agriculture 11(3):223

doi: 10.3390/agriculture11030223
[32]

Xu Q, Dai L, Zhou Y, Dou Z, Gao W, et al. 2023. Effect of nitrogen application on greenhouse gas emissions and nitrogen uptake by plants in integrated rice-crayfish farming. Science of The Total Environment 905:167629

doi: 10.1016/j.scitotenv.2023.167629
[33]

Hu Y, Yang T, Liu Y, Li F, Xu C, et al. 2022. High fish stocking density weakens the effects of rice-fish co-culture on water eutrophication and greenhouse gas emissions. Water, Air, & Soil Pollution 233(6):222

doi: 10.1007/s11270-022-05691-w
[34]

Zhang Y, Guan C, Li Z, Luo J, Ren B, et al. 2023. Review of rice–fish–duck symbiosis system in China—one of the globally important ingenious agricultural heritage systems (GIAHS). Sustainability 15(3):1910

doi: 10.3390/su15031910
[35]

Qi Z, Liu S, Ning B, Wu X. 2022. The history of rice-fish co-culture in China and its inspiration for the cooperation of the Lancang-Mekong countries. Aquaculture Research 53(17):5761−5770

doi: 10.1111/are.16069
[36]

Li H, Zhang H, Yang Y, Fu G, Tao L, et al. 2022. Effects and oxygen-regulated mechanisms of water management on cadmium (Cd) accumulation in rice (Oryza sativa). Science of The Total Environment 846:157484

doi: 10.1016/j.scitotenv.2022.157484
[37]

Ahmed N, Thompson S, Hardy B, Turchini GM. 2021. An ecosystem approach to wild rice-fish cultivation. Reviews in Fisheries Science & Aquaculture 29(4):549−565

doi: 10.1080/23308249.2020.1833833
[38]

Zhang Y, Liu YH, Tang DY, Zhang J, Zhang XY, et al. 2024. Enhancing biomass and ecological sustainability in rice–fish cocropping systems through the induction of functional microbiota with compound biogenic bait. Soil Ecology Letters 6(4):240−252

doi: 10.1007/s42832-024-0252-4
[39]

Wang M, Li F, Wu J, Yang T, Xu C, et al. 2024. Response of CH4 and N2O emissions to the feeding rates in a pond rice-fish co-culture system. Environmental Science and Pollution Research 31(40):53437−53446

doi: 10.1007/s11356-024-34772-y
[40]

Haque MM, Mahmud MN. 2025. Potential role of aquaculture in advancing sustainable development goals (SDGs) in Bangladesh. Aquaculture Research 2025(1):6035730

doi: 10.1155/are/6035730
[41]

Xu Q, Peng X, Guo H, Che Y, Dou Z, et al. 2022. Rice-crayfish coculture delivers more nutrition at a lower environmental cost. Sustainable Production and Consumption 29:14−24

doi: 10.1016/j.spc.2021.09.020
[42]

Zhang Y, Hu T, Wang H, Jin H, Liu Q, et al. 2022. Nitrogen content and C/N ratio in straw are the key to affect biological nitrogen fixation in a paddy field. Plant and Soil 481(1):535−546

doi: 10.1007/s11104-022-05654-4
[43]

Wu Y, Li Y, Niu L, Zhang W, Wang L, et al. 2022. Nutrient status of integrated rice-crayfish system impacts the microbial nitrogen-transformation processes in paddy fields and rice yields. Science of The Total Environment 836:155706

doi: 10.1016/j.scitotenv.2022.155706
[44]

Liu T, Li C, Tan W, Wang J, Feng J, et al. 2022. Rice-crayfish co-culture reduces ammonia volatilization and increases rice nitrogen uptake in Central China. Agriculture, Ecosystems & Environment 330:107869

doi: 10.1016/j.agee.2022.107869
[45]

Wu M, Lu R, Huang W, Liu H, Zou Y, et al. 2024. Major diet of common carp (Cyprinus carpio L.) over different developmental stages in rice fields: agroecological interactions between fishes and rice in Sichuan, China, based on DNA metabarcoding approach. Global Ecology and Conservation 56:e03298

doi: 10.1016/j.gecco.2024.e03298
[46]

Jiang Y, Cao C. 2021. Crayfish–rice integrated system of production: an agriculture success story in China. A review. Agronomy for Sustainable Development 41(5):68

doi: 10.1007/s13593-021-00724-w
[47]

Hou J, Wang X, Xu Q, Cao Y, Zhang D, et al. 2021. Rice-crayfish systems are not a panacea for sustaining cleaner food production. Environmental Science and Pollution Research 28(18):22913−22926

doi: 10.1007/s11356-021-12345-7
[48]

Ren Y, Li S, Shao J, Xun W, Miao Y, et al. 2025. Integrating composite microorganism agents in rice-crayfish rotational cropping systems to enhance water quality and productivity. Environmental Technology & Innovation 39:104280

doi: 10.1016/j.eti.2025.104280
[49]

Zhang Y, Tang KW, Yang P, Yang H, Tong C, et al. 2022. Assessing carbon greenhouse gas emissions from aquaculture in China based on aquaculture system types, species, environmental conditions and management practices. Agriculture, Ecosystems & Environment 338:108110

doi: 10.1016/j.agee.2022.108110
[50]

Yang T, Wang X, Wang M, Li F, Barthel M, et al. 2025. Impact of rice-crab and rice-fish co-cultures on the methane emission and its transport in aquaculture ponds. Agriculture, Ecosystems & Environment 378:109281

doi: 10.1016/j.agee.2024.109281
[51]

Hu Z, Wu S, Ji C, Zou J, Zhou Q, et al. 2016. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China. Environmental Science and Pollution Research 23(2):1505−1515

doi: 10.1007/s11356-015-5383-9
[52]

Liu J, Cao J, Su R, Yan L, Wang K, et al. 2025. Variations in the N2 fixation and CH4 oxidation activities of type I methanotrophs in the rice roots in saline-alkali paddy field under nitrogen fertilization. Rice 18(1):17

doi: 10.1186/s12284-025-00766-8
[53]

Zhang Z, Du L, Xiao Z, Li C, Wang Z, et al. 2022. Rice-crayfish farming increases soil organic carbon. Agriculture, Ecosystems & Environment 329:107857

doi: 10.1016/j.agee.2022.107857
[54]

Chen S, Guo Y, Yuan P, Jiang Y, Cao C. 2025. Carbon sequestration, emission reduction, and technical strategies of rice-crayfish farming in Central China. Scientific Reports 15(1):29352

doi: 10.1038/s41598-025-92901-0
[55]

Xu Q, Dai L, Shang Z, Zhou Y, Li J, et al. 2023. Application of controlled-release urea to maintain rice yield and mitigate greenhouse gas emissions of rice–crayfish coculture field. Agriculture, Ecosystems & Environment 344:108312

doi: 10.1016/j.agee.2022.108312
[56]

Feng J, Liu Y, Li F, Zhou X, Xu C, et al. 2021. Effect of phosphorus and potassium addition on greenhouse gas emissions and nutrient utilization of a rice-fish co-culture system. Environmental Science and Pollution Research 28(28):38034−38042

doi: 10.1007/s11356-020-12064-5
[57]

Zhang Z, Xie D, Teng W, Gu F, Zhang R, et al. 2025. A state-of-the-art review on carbon, nitrogen, and phosphorus cycling and efficient utilization in paddy fields. Plant and Soil 513(2):1689−1709

doi: 10.1007/s11104-025-07344-3
[58]

Yang T, Zhang H, Li F, Yang T, Shi Y, et al. 2024. Optimized tillage method increased rice yield in rice ratooning system. Agriculture 14(10):1768

doi: 10.3390/agriculture14101768
[59]

Sun N, Liu J, Wang ZJ, Liu S, Wang HC, et al. 2023. Phenanthrene release-migration characteristics and potential influencing mechanisms from paddy soil to overlying water under bioturbation in a rice-fish coculture agroecosystem. Journal of Cleaner Production 430:139719

doi: 10.1016/j.jclepro.2023.139719
[60]

Wu Y, Sun J, Yu P, Zhang W, Lin Y, et al. 2022. The rhizosphere bacterial community contributes to the nutritional competitive advantage of weedy rice over cultivated rice in paddy soil. BMC Microbiology 22(1):232

doi: 10.1186/s12866-022-02648-1
[61]

Sun N, Yu S, Cai Z, Liu J, Wang T, et al. 2022. Inhibition of polycyclic aromatic hydrocarbon (PAHs) release from sediments in an integrated rice and crab coculture system by rice straw biochar. Journal of Cleaner Production 367:133058

doi: 10.1016/j.jclepro.2022.133058
[62]

Xie K, Wang M, Wang X, Li F, Xu C, et al. 2024. Effect of rice cultivar on greenhouse-gas emissions from rice–fish co-culture. The Crop Journal 12(3):888−896

doi: 10.1016/j.cj.2024.04.011
[63]

Rao K, Yang L, Sun M, Wu C, Guo L, et al. 2025. Effects of rice-fish co-culture models on sediment heavy metals, nutrient dynamics, and bacterial community structure. Aquatic Ecology 59(3):849−861

doi: 10.1007/s10452-025-10200-2
[64]

Khoshru B, Khoshmanzar E, Asgari Lajayer B, Ghorbanpour M. 2023. Soil moisture–mediated changes in microorganism biomass and bioavailability of nutrients in paddy soil. In Plant Stress Mitigators. US: Academic Press. pp. 479−494 doi: 10.1016/B978-0-323-89871-3.00005-7

[65]

Wang L, Luo P, Jiang C, Shen J, Liu F, et al. 2023. Distinct effects of biochar addition on soil macropore characteristics at different depths in a double-rice paddy field. Science of The Total Environment 857:159368

doi: 10.1016/j.scitotenv.2022.159368
[66]

Jin Q, Wang C, Sardans J, Vancov T, Fang Y, et al. 2022. Effect of soil degradation on the carbon concentration and retention of nitrogen and phosphorus across Chinese rice paddy fields. CATENA 209:105810

doi: 10.1016/j.catena.2021.105810
[67]

Wang B, Sun Y, Jiao W. 2021. Ecological benefit evaluation of agricultural heritage system conservation—a case study of the Qingtian rice-fish culture system. Journal of Resources and Ecology 12(4):489−497

doi: 10.5814/j.issn.1674-764x.2021.04.007
[68]

Liu X, Shi ZJ, Zhang JE, Sun DL, Wei H. 2023. Effects of integrated rice-animals co-culture on paddy soil and water properties and rice yield: a meta-analysis. Archives of Agronomy and Soil Science 69(11):2187−2201

doi: 10.1080/03650340.2022.2142571
[69]

Wu G, Ling J, Zhao DQ, Liu ZX, Xu YP, et al. 2023. Straw return counteracts the negative effects of warming on microbial community and soil multifunctionality. Agriculture, Ecosystems & Environment 352:108508

doi: 10.1016/j.agee.2023.108508
[70]

Cheng Z, Xu H, Xia Y, Xu F. 2022. Estimation of bed shear stress and analysis of sediment resuspension in Lake Chaohu, China. Environmental Science and Pollution Research 29(31):47036−47049

doi: 10.1007/s11356-022-19275-y
[71]

Arunrat N, Sereenonchai S. 2022. Assessing ecosystem services of rice–fish co-culture and rice monoculture in Thailand. Agronomy 12(5):1241

doi: 10.3390/agronomy12051241
[72]

Gu J, Yang J. 2022. Nitrogen (N) transformation in paddy rice field: its effect on N uptake and relation to improved N management. Crop and Environment 1(1):7−14

doi: 10.1016/j.crope.2022.03.003
[73]

Yao BM, Wang SQ, Xie ST, Li G, Sun GX. 2022. Optimal soil Eh, pH for simultaneous decrease of bioavailable Cd, as in co-contaminated paddy soil under water management strategies. Science of The Total Environment 806:151342

doi: 10.1016/j.scitotenv.2021.151342
[74]

Xiong Q, Hu J, Wei H, Zhang H, Zhu J, et al. 2021. Relationship between plant roots, rhizosphere microorganisms, and nitrogen and its special focus on rice. Agriculture 11(3):234

doi: 10.3390/agriculture11030234
[75]

Ma M, Lv W, Huang Y, Zhang J, Li S, et al. 2025. Nitrogen fertilizer reduction in rice–eel co-culture system improves the soil microbial diversity and its functional stability. Plants 14(15):2425

doi: 10.3390/plants14152425
[76]

Liu L, Zheng N, Yu Y, Zheng Z, Yao H. 2024. Soil carbon and nitrogen cycles driven by iron redox: a review. Science of The Total Environment 918:170660

doi: 10.1016/j.scitotenv.2024.170660
[77]

Sun G, Sun M, Du L, Zhang Z, Wang Z, et al. 2021. Ecological rice-cropping systems mitigate global warming–a meta-analysis. Science of The Total Environment 789:147900

doi: 10.1016/j.scitotenv.2021.147900
[78]

Duan Y, Li Q, Zhang L, Huang Z, Zhao Z, et al. 2022. Toxic metals in a paddy field system: a review. Toxics 10(5):249

doi: 10.3390/toxics10050249
[79]

Huang H, Wang Z, Ma Y, Zhu P, Zhang X, et al. 2025. The impact of rice–frog co-cultivation on greenhouse gas emissions of reclaimed paddy fields. Biology 14(7):861

doi: 10.3390/biology14070861
[80]

Abulaiti A, She D, Zhang W, Xia Y. 2023. Regulation of denitrification/ammonia volatilization by periphyton in paddy fields and its promise in rice yield promotion. Journal of the Science of Food and Agriculture 103(8):4119−4130

doi: 10.1002/jsfa.12403
[81]

Ibrahim MM, Tong C, Hu K, Zhou B, Xing S, et al. 2020. Biochar-fertilizer interaction modifies N-sorption, enzyme activities and microbial functional abundance regulating nitrogen retention in rhizosphere soil. Science of The Total Environment 739:140065

doi: 10.1016/j.scitotenv.2020.140065
[82]

Ibrahim LA, Shaghaleh H, Abu-Hashim M, Elsadek EA, Hamoud YA, et al. 2023. Exploring the integration of rice and aquatic species: insights from global and national experiences. Water 15(15):2750

doi: 10.3390/w15152750
[83]

Han RC, Xu ZR, Li CY, Rasheed A, Pan XH, et al. 2022. The removal of nitrate reductase phosphorylation enhances tolerance to ammonium nitrogen deficiency in rice. Journal of Integrative Agriculture 21(3):631−643

doi: 10.1016/S2095-3119(20)63473-6
[84]

Ren L, Liu P, Xu F, Gong Y, Zhai X, et al. 2023. Rice–fish coculture system enhances paddy soil fertility, bacterial network stability and keystone taxa diversity. Agriculture, Ecosystems & Environment 348:108399

doi: 10.1016/j.agee.2023.108399
[85]

Ding B, Li Z, Qin Y. 2017. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone. Environmental Pollution 231:379−386

doi: 10.1016/j.envpol.2017.08.027
[86]

Wang Y, Wang C, Chen Y, Zhang D, Zhao M, et al. 2021. Microbiome analysis reveals microecological balance in the emerging rice–crayfish integrated breeding mode. Frontiers in Microbiology 12:669570

doi: 10.3389/fmicb.2021.669570
[87]

Liu X, Jia Q, Sun D, Zhang J, Zheng H, et al. 2024. Influence of nitrogen substitution at an equivalent total nitrogen level on bacterial and fungal communities, as well as enzyme activities of the ditch-bottom soil in a rice–fish coculture system. Journal of the Science of Food and Agriculture 104(7):4206−4217

doi: 10.1002/jsfa.13302
[88]

Fang K, Chen H, Dai W, Wang J, Cao L, et al. 2022. Microbe-mediated reduction of methane emission in rice-frog crop ecosystem. Applied Soil Ecology 174:104415

doi: 10.1016/j.apsoil.2022.104415
[89]

Li S, Li W, Ding K, Shi X, Kalkhajeh YK, et al. 2024. Co-culture of rice and aquatic animals enhances soil organic carbon: a meta-analysis. Science of The Total Environment 955:176819

doi: 10.1016/j.scitotenv.2024.176819
[90]

Hou Y, Jia R, Zhou L, Zhang L, Wei S, et al. 2025. Alterations in microbial-mediated methane, nitrogen, sulfur, and phosphorus cycling within paddy soil induced by integrated rice-fish farming. Journal of Environmental Management 388:126056

doi: 10.1016/j.jenvman.2025.126056
[91]

Ding B, Li Z, Cai M, Lu M, Liu W. 2022. Feammox is more important than anammox in anaerobic ammonium loss in farmland soils around Lake Taihu, China. Chemosphere 305:135412

doi: 10.1016/j.chemosphere.2022.135412
[92]

Yu C, Zhang L, Yang L, Bai W, Feng C, et al. 2021. Effect of a urea and urease/nitrification inhibitor combination on rice straw hydrolysis and nutrient turnover on rice growth. BioResources 16(2):3059−3074

doi: 10.15376/biores.16.2.3059-3074
[93]

Li W, Li Z, Liu Y, Nie X, Deng C, et al. 2022. Reshaping of soil carbon and nitrogen contents in quincentenary ancient rice terraces: the role of both short-term abandonment and prokaryotic functional groups. Frontiers in Microbiology 13:1007237

doi: 10.3389/fmicb.2022.1007237
[94]

Wang C, Yang Q, Chen J, Zhang C, Liu K, et al. 2024. Variations in soil organic carbon fractions and microbial community in rice fields under an integrated cropping system. Agronomy 14(1):81

doi: 10.3390/agronomy14010081
[95]

Yan Y, Liu MD, Yang D, Zhang W, An H, et al. 2014. Effect of different rice-crab coculture modes on soil carbohydrates. Journal of Integrative Agriculture 13(3):641−647

doi: 10.1016/S2095-3119(13)60722-4
[96]

Huang X, Li M, Huang Y, Yang H, Geng Y, et al. 2022. Microbiome analysis reveals microecological advantages of emerging ditchless rice-crayfish co-culture mode. Frontiers in Microbiology 13:892026

doi: 10.3389/fmicb.2022.892026
[97]

Xu H, Wang D, Li X, Li J, Xu Y, et al. 2025. Cultivating crayfish (Procambarus clarkii) significantly enhances the quantity and diversity of soil microorganisms: evidence from the comparison of rice-wheat and rice-crayfish rotation models. Frontiers in Microbiology 16:1528883

doi: 10.3389/fmicb.2025.1528883
[98]

Yang Z, Yao Y, Sun M, Li G, Zhu J. 2023. Effects of rice–crayfish co-culture on ammonia-oxidizing microbial abundance and community structure. Aquatic Ecology 57(1):21−33

doi: 10.1007/s10452-022-09989-z
[99]

Liu X, Sun D, Huang H, Zhang J, Zheng H, et al. 2024. Rice-fish coculture without phosphorus addition improves paddy soil nitrogen availability by shaping ammonia-oxidizing archaea and bacteria in subtropical regions of South China. Science of The Total Environment 927:171642

doi: 10.1016/j.scitotenv.2024.171642
[100]

Zhang Y, Hou Y, Jia R, Li B, Zhu J, et al. 2024. Alterations in soil bacterial community and its assembly process within paddy field induced by integrated rice–giant river prawn (Macrobrachium rosenbergii) farming. Agronomy 14(8):1600

doi: 10.3390/agronomy14081600
[101]

Wang R, Ma W, Wu D, Zhang Y, Ma X, et al. 2023. Soil bacterial community composition in rice-turtle coculture systems with different planting years. Scientific Reports 13(1):22708

doi: 10.1038/s41598-023-49701-1
[102]

Zhang Y, Chen M, Zhao YY, Zhang AY, Peng DH, et al. 2021. Destruction of the soil microbial ecological environment caused by the over-utilization of the rice-crayfish co-cropping pattern. Science of the Total Environment 788:147794

doi: 10.1016/j.scitotenv.2021.147794
[103]

Zhang Z, Zhang C, Yang Y, Zhang Z, Guo K, et al. 2025. Roles of nitrite in facilitating nitrogen and sulfur conversion in the hybrid bioreactor of sulfate-reduced ammonium oxidation and anaerobic ammonium oxidation. Bioresource Technology 419:132085

doi: 10.1016/j.biortech.2025.132085
[104]

Wang A, Zou D, Zhang M, Luo Y, Li S, et al. 2025. Metagenomic insight into the impact of soil nutrients and microbial community structure on greenhouse gas emissions: a case study in giant rice–fish co-cultured mode. Agronomy 15(8):1982

doi: 10.3390/agronomy15081982
[105]

Gao T, Li Y, Yang N, Xiong W, Liang X, et al. 2025. Plant-rhizosphere microbe interactions and their roles in nitrogen cycles under periodic flooding: from cooperation mechanisms to ecological responses. Critical Reviews in Environmental Science and Technology 55(17):1358−1382

doi: 10.1080/10643389.2025.2530941
[106]

Bian W, Yang L, Li YL, Guo D, Lu HQ, et al. 2025. Enhanced nitrogen removal in constructed wetlands by low-temperature-tolerant heterotrophic nitrification bacteria Pseudomonas umsongensis YL-1: pollutant removal, rhizosphere effects, and bacterial interactions. Bioresource Technology 438:133222

doi: 10.1016/j.biortech.2025.133222
[107]

Chen LF, Chen LX, Pan D, Ren YL, Zhang J, et al. 2023. Ammonium removal characteristics of Delftia tsuruhatensis SDU2 with potential application in ammonium-rich wastewater treatment. International Journal of Environmental Science and Technology 20(4):3911−3926

doi: 10.1007/s13762-022-04219-3
[108]

Zhu X, Yang P, Xiong G, Wei H, Zhang L, et al. 2023. Microbial biogeochemical cycling reveals the sustainability of the rice-crayfish co-culture model. iScience 26(5):106769

doi: 10.1016/j.isci.2023.106769
[109]

Wang A, Hao X, Chen W, Luo X, Huang Q. 2023. Rice-crayfish co-culture increases microbial necromass' contribution to the soil nitrogen pool. Environmental Research 216:114708

doi: 10.1016/j.envres.2022.114708
[110]

Arunrat N, Sansupa C, Kongsurakan P, Sereenonchai S, Hatano R, et al. 2022. Soil microbial diversity and community composition in rice–fish co-culture and rice monoculture farming system. Biology 11(8):1242

doi: 10.3390/biology11081242
[111]

Herlambang A, Murwantoko M, Istiqomah I. 2021. Dynamic change in bacterial communities in the integrated rice–fish farming system in Sleman, Yogyakarta, Indonesia. Aquaculture Research 52(11):5566−5578

doi: 10.1111/are.15432
[112]

Shi HT, Feng XC, Xiao ZJ, Jiang CY, Wang WQ, et al. 2025. Enhanced denitrification in constructed wetlands with low carbon/nitrogen ratios: insights into reallocation of carbon metabolism based on electron utilization. Engineering 45:222−233

doi: 10.1016/j.eng.2024.07.020
[113]

Wei D, Xing C, Hou D, Zeng S, Zhou R, et al. 2021. Distinct bacterial communities in the environmental water, sediment and intestine between two crayfish-plant coculture ecosystems. Applied Microbiology and Biotechnology 105(12):5087−5101

doi: 10.1007/s00253-021-11369-w
[114]

Du F, Yin Y, Zhai L, Zhang F, Wang S, et al. 2024. Increased anaerobic conditions promote the denitrifying nitrogen removal potential and limit anammox substrate acquisition within paddy irrigation and drainage units. Science of The Total Environment 951:175616

doi: 10.1016/j.scitotenv.2024.175616
[115]

Zhao Z, Chu C, Zhou D, Wang Q, Wu S, et al. 2021. Soil bacterial community composition in rice–fish integrated farming systems with different planting years. Scientific Reports 11(1):10855

doi: 10.1038/s41598-021-90370-9
[116]

Si G, Yuan J, Xu X, Zhao S, Peng C, et al. 2018. Effects of an integrated rice-crayfish farming system on soil organic carbon, enzyme activity, and microbial diversity in waterlogged paddy soil. Acta Ecologica Sinica 38(1):29−35

doi: 10.1016/j.chnaes.2018.01.005
[117]

Wu W, Du X, Qin Z, Liu Q, Pan F, et al. 2024. Integrated rice-snail-crayfish farming system shapes soil microbial community by enhancing pH and microbial biomass in south subtropical China. Agriculture 14(12):2133

doi: 10.3390/agriculture14122133
[118]

Hu L, Guo L, Zhao L, Shi X, Ren W, et al. 2020. Productivity and the complementary use of nitrogen in the coupled rice-crab system. Agricultural Systems 178:102742

doi: 10.1016/j.agsy.2019.102742
[119]

Ma H, Lv M, Lin Y, Chen X, Wang D, et al. 2020. Prawn (Macrobrachium rosenbergii)–plant (Hydrilla verticillata) co-culture system improves water quality, prawn production and economic benefit through stocking density and feeding regime manage. Aquaculture Research 51(6):2169−2178

doi: 10.1111/are.14585
[120]

Zhang X, Ward BB, Sigman DM. 2020. Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chemical Reviews 120(12):5308−5351

doi: 10.1021/acs.chemrev.9b00613
[121]

Ashraf MN, Hu C, Wu L, Duan Y, Zhang W, et al. 2020. Soil and microbial biomass stoichiometry regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization. Journal of Soils and Sediments 20(8):3103−3113

doi: 10.1007/s11368-020-02642-y
[122]

Hou Y, Xu Q, Yang Y, Jia R, Huang X, et al. 2024. Dynamic impact of one-year integrated rice–crayfish farming on bacterioplankton communities in paddy water. Biology 13(12):1059

doi: 10.3390/biology13121059
[123]

Majumdar A, Dubey PK, Giri B, Moulick D, Srivastava AK, et al. 2023. Combined effects of dry-wet irrigation, redox changes and microbial diversity on soil nutrient bioavailability in the rice field. Soil and Tillage Research 232:105752

doi: 10.1016/j.still.2023.105752
[124]

Li SX, Jiang J, Lv WG, Siemann E, Woodcock BA, et al. 2025. Rice-fish co-culture promotes multiple ecosystem services supporting increased yields. Agriculture, Ecosystems & Environment 381:109417

doi: 10.1016/j.agee.2024.109417
[125]

Ren W, Hu L, Guo L, Zhang J, Tang L, et al. 2018. Preservation of the genetic diversity of a local common carp in the agricultural heritage rice–fish system. Proceedings of the National Academy of Sciences of the United States of America 115(3):E546−E554

doi: 10.1073/pnas.1709582115
[126]

Li F, Feng J, Zhou X, Xu C, Jijakli MH, et al. 2019. Impact of rice-fish/shrimp co-culture on the N2O emission and NH3 volatilization in intensive aquaculture ponds. Science of The Total Environment 655:284−291

doi: 10.1016/j.scitotenv.2018.10.440
[127]

Saowakoon S, Saowakoon K, Jutagate A, Hiroki M, Fukushima M, et al. 2021. Growth and feeding behavior of fishes in organic rice–fish systems with various species combinations. Aquaculture Reports 20:100663

doi: 10.1016/j.aqrep.2021.100663
[128]

Lokuhetti RT, Kondaramage RSKH, Herath SS, Vidanapathirana NP, Atapaththu KSS. 2025. Comparison of rice production in an integrated rice-fish system using tilapia (Oreochromis niloticus) and common carp (Cyprinus carpio): rice fish integration. Indian Journal of Fisheries 72(1):87−94

doi: 10.21077/ijf.2025.72.1.140273-11
[129]

Ye Y, Bai H, Zhang J, Sun D. 2024. A comparative analysis of ecosystem service values from various rice farming systems: a field experiment in China. Ecosystem Services 70:101664

doi: 10.1016/j.ecoser.2024.101664
[130]

Li M, Hu X, Hu R, Liang K, Zhong X, et al. 2023. Evaluating rice varieties for suitability in a rice–fish co-culture system based on lodging resistance and grain yield. Agronomy 13(9):2392

doi: 10.3390/agronomy13092392
[131]

Zhou J, Zhao Z, Zhang L, Huang Z, Zhao H, et al. 2021. Integrative analysis identifies the quality advantage and corresponding regulatory mechanism of paddy field–cultured crayfish (Procambarus clarkii). Applied Microbiology and Biotechnology 105(19):7451−7461

doi: 10.1007/s00253-021-11563-w
[132]

Ahmed N, Hornbuckle J, Turchini GM. 2022. Blue–green water utilization in rice–fish cultivation towards sustainable food production. Ambio 51(9):1933−1948

doi: 10.1007/s13280-022-01711-5
[133]

Guo H, Qi M, Hu Z, Liu Q. 2020. Optimization of the rice-fish coculture in Qingtian, China: 1. Effects of rice spacing on the growth of the paddy fish and the chemical composition of both rice and fish. Aquaculture 522:735106

doi: 10.1016/j.aquaculture.2020.735106
[134]

Hu W, Gao Y, He X, Sun J, Liu Q. 2023. Origin of domesticated Qingtian paddy-field carp and its genetic differentiation from wild common carp populations. Aquaculture 565:739117

doi: 10.1016/j.aquaculture.2022.739117
[135]

Yan J, Yu J, Huang W, Pan X, Li Y, et al. 2023. Initial studies on the effect of the rice–duck–crayfish ecological co-culture system on physical, chemical, and microbiological properties of soils: a field case study in Chaohu Lake Basin, southeast China. International Journal of Environmental Research and Public Health 20(3):2006

doi: 10.3390/ijerph20032006
[136]

Li CF, Cao CG, Wang JP, Zhan M, Yuan WL, et al. 2008. Nitrogen losses from integrated rice–duck and rice–fish ecosystems in southern China. Plant and Soil 307(1):207−217

doi: 10.1007/s11104-008-9597-1
[137]

Guo L, Zhao L, Ye J, Ji Z, Tang JJ, et al. 2022. Using aquatic animals as partners to increase yield and maintain soil nitrogen in the paddy ecosystems. eLife 11:e73869

doi: 10.7554/eLife.73869
[138]

Mirhaj M, Razzak MA, Wahab MA. 2014. Comparison of nitrogen balances and efficiencies in rice cum prawn vs. rice cum fish cultures in Mymensingh, North-Eastern Bangladesh. Agricultural Systems 125:54−62

doi: 10.1016/j.agsy.2013.12.004
[139]

Wan NF, Li SX, Li T, Cavalieri A, Weiner J, et al. 2019. Ecological intensification of rice production through rice-fish co-culture. Journal of Cleaner Production 234:1002−1012

doi: 10.1016/j.jclepro.2019.03.292
[140]

Li Y, Wu Y, Wang S, Peng H, Zheng F, et al. 2024. Rational nitrogen reduction helps mitigate the nitrogen pollution risk while ensuring rice growth in a tropical rice–crayfish coculture system. Agriculture 14(10):1816

doi: 10.3390/agriculture14101816
[141]

Kaewpuangdee P, Saowakoon S, Kasamawut K, Kruapukdee A, Jutagate A, et al. 2024. Changes in water quality and soil property in the rice–freshwater animal co-culturing system. Water 16(20):2890

doi: 10.3390/w16202890
[142]

Hu L, Ren W, Tang J, Li N, Zhang J, et al. 2013. The productivity of traditional rice–fish co-culture can be increased without increasing nitrogen loss to the environment. Agriculture, Ecosystems & Environment 177:28−34

doi: 10.1016/j.agee.2013.05.023
[143]

Oehme M, Frei M, Razzak MA, Dewan S, Becker K. 2007. Studies on nitrogen cycling under different nitrogen inputs in integrated rice-fish culture in Bangladesh. Nutrient Cycling in Agroecosystems 79(2):181−191

doi: 10.1007/s10705-007-9106-6
[144]

Tsuruta T, Yamaguchi M, Abe SI, Iguchi K. 2011. Effect of fish in rice-fish culture on the rice yield. Fisheries Science 77(1):95−106

doi: 10.1007/s12562-010-0299-2