[1]

Samuels L, Kunst L, Jetter R. 2008. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annual Review of Plant Biology 59:683−707

doi: 10.1146/annurev.arplant.59.103006.093219
[2]

Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM. 2009. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology 5:308−316

doi: 10.1038/nchembio.164
[3]

Inuma T, Khodaparast SA, Takamatsu S. 2007. Multilocus phylogenetic analyses within Blumeria graminis, a powdery mildew fungus of cereals. Molecular Phylogenetics and Evolution 44:741−751

doi: 10.1016/j.ympev.2007.01.007
[4]

Dean R, Van Kan JAL, Pretorius ZA, Hammond‐Kosack KE, Di Pietro A, et al. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13:414−430

doi: 10.1111/j.1364-3703.2011.00783.x
[5]

Zhu Y, Zhu S, Zhang F, Zhao Z, Christensen MJ, et al. 2022. Transcriptomic analyses reveals molecular regulation of photosynthesis by Epichloë endophyte in Achnatherum inebrians under Blumeria graminis infection. Journal of Fungi 8:1201

doi: 10.3390/jof8111201
[6]

Glawe DA. 2008. The powdery mildews: a review of the world's most familiar (yet poorly known) plant pathogens. Annual Review of Phytopathology 46:27−51

doi: 10.1146/annurev.phyto.46.081407.104740
[7]

Schardl CL, Craven KD, Speakman S, Stromberg A, Lindstrom A, et al. 2008. A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses. Systematic Biology 57:483−498

doi: 10.1080/10635150802172184
[8]

Nan ZB, Li CJ. 2000. Neotyphodium in native grasses in China and observations on endophyte/host interactions. Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium, Soest, Germany, 27–29 September, 2000. Soest. pp. 41−50

[9]

Li C, Nan Z. 2004. A new Neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China. Mycotaxon 90:141−147

doi: 10.5962/p.440330
[10]

Chen L, Li X, Li C, Swoboda GA, Young CA, et al. 2015. Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass. Mycologia 107:863−873

doi: 10.3852/15-019
[11]

Zhang XX, Li CJ, Nan ZB, Matthew C. 2012. Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. Weed Research 52:70−78

doi: 10.1111/j.1365-3180.2011.00887.x
[12]

Zhao Z, Kou M, Zhong R, Xia C, Christensen MJ, et al. 2021. Transcriptome analysis revealed plant hormone biosynthesis and response pathway modification by Epichloëgansuensis in Achnatherum inebrians under different soil moisture avail-ability. Journal of Fungi 7:640

doi: 10.3390/jof7080640
[13]

Zhong R, Bastías DA, Zhang X, Li C, Nan, Z. 2022. Vertically transmitted Epichloë systemic endophyte enhances drought tolerance of Achnatherum inebrians host plants through promoting photosynthesis and biomass accumulation. Journal of Fungi 8:512

doi: 10.3390/jof8050512
[14]

Klavins L, Klavins M. 2020. Cuticular wax composition of wild and cultivated northern berries. Foods 9:587

doi: 10.3390/foods9050587
[15]

Raven JA, Edwards D. 2004. Physiological evolution of lower embryophytes: adaptations to the terrestrial environment. In The Evolution of Plant Physiology, eds. Hemsley AR, Poole I. USA: Academic Press. pp. 17−41 doi: 10.1016/B978-012339552-8/50003-2

[16]

Bacete L, Mélida H, Pattathil S, Hahn MG, Molina A, et al. 2017. Characterization of plant cell wall damage-associated molecular patterns regulating immune responses. In Plant Pattern Recognition Receptors, eds. Shan L, He P. New York, USA: Humana Press. pp. 13−23 doi: 10.1007/978-1-4939-6859-6_2

[17]

Wang X, Kong L, Zhi P, Chang C. 2020. Update on cuticular wax biosynthesis and its roles in plant disease resistance. International Journal of Molecular Sciences 21:5514

doi: 10.3390/ijms21155514
[18]

Arya GC, Sarkar S, Manasherova E, Aharoni A, Cohen H. 2021. The plant cuticle: an ancient guardian barrier set against long-standing rivals. Frontiers in Plant Science 12:663165

doi: 10.3389/fpls.2021.663165
[19]

Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, et al. 2009. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology 151:1918−1929

doi: 10.1104/pp.109.141911
[20]

Lee SB, Suh MC. 2015. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Reports 34:557−572

doi: 10.1007/s00299-015-1772-2
[21]

Jenks MA, Ashworth EN. 1998. Plant epicuticular waxes: function, production, and genetics. In Horticultural Reviews, ed. Janick J. Hoboken, NJ, USA: John Wiley & Sons, Inc. pp. 1−68 doi: 10.1002/9780470650752.ch1

[22]

Razeq FM, Kosma DK, Rowland O, Molina I. 2014. Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Phytochemistry 106:188−196

doi: 10.1016/j.phytochem.2014.06.018
[23]

Riederer M. 2006. Introduction: biology of the plant cuticle. In Annual Plant Reviews Volume 23: Biology of the Plant Cuticle, eds. Riederer M, Müller C. Oxford, UK: Blackwell Publishing Ltd. pp. 1−10 doi: 10.1002/9780470988718.ch1

[24]

Li CJ, Nan ZB, Liu Y, Paul VH, Dapprich P. 2008. Methodology of endophyte detection of drunken horse grass (Achnatherum inebrians). Edible Fungi of China 27:21−24 (in Chinese)

[25]

Kou MZ, Bastías DA, Christensen MJ, Zhong R, Nan ZB, et al. 2021. The plant salicylic acid signalling pathway regulates the infection of a biotrophic pathogen in grasses associated with an Epichloë endophyte. Journal of Fungi 7:633

doi: 10.3390/jof7080633
[26]

Zhao Z, Ju Y, Kou M, Tian M, Christensen MJ, et al. 2022. Cuticular wax modification by Epichloë endophyte in Achnatherum inebrians under different soil moisture availability. Journal of Fungi 8:725

doi: 10.3390/jof8070725
[27]

Kou MZ. 2021. The responses of Achnatherum inebrians-Epichloë endophyte symbiont to Blumeria graminis. Thesis. University of Lanzhou, China. 100 pp. doi: 10.27204/d.cnki.glzhu.2021.003233

[28]

Zhao ZR. 2023. The mechanism of response of Achnatherum inebrians-Epichloë endophyte symbiont to drought stress. Thesis. University of Lanzhou, China. 115 pp. doi: 10.27204/d.cnki.glzhu.2023.003385

[29]

Wang Y, Lv Y, Han T, Liu Y, Jiang Y. 2025. Post-harvest quality changes and molecular responses of epidermal wax in ‘Munage’ grapes with Botrytis cinerea infection. International Journal of Molecular Sciences 26:3468

doi: 10.3390/ijms26083468
[30]

Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, et al. 2011. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stesses. Plant Physiology 156:29−45

doi: 10.1104/pp.111.172320
[31]

Pascal S, Bernard A, Deslous P, Gronnier J, Fournier-Goss A, et al. 2019. Arabidopsis CER1-LIKE1 functions in a cuticular very-long-chain alkane-forming complex. Plant Physiology 179:415−432

doi: 10.1104/pp.18.01075
[32]

Javelle M, Vernoud V, Depège-Fargeix N, Arnould C, Oursel D, et al. 2010. Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor OUTER CELL LAYER1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis. Plant Physiology 154:273−286

doi: 10.1104/pp.109.150540
[33]

Mao B, Cheng Z, Lei C, Xu F, Gao S, et al. 2012. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta 235:39−52

doi: 10.1007/s00425-011-1481-1
[34]

Hansjakob A, Bischof S, Bringmann G, Riederer M, Hildebrandt U. 2010. Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner. New Phytologist 188:1039−1054

doi: 10.1111/j.1469-8137.2010.03419.x
[35]

Hansjakob A, Riederer M, Hildebrandt U. 2011. Wax matters: absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of Blumeria graminis. Plant Pathology 60:1151−1161

doi: 10.1111/j.1365-3059.2011.02467.x
[36]

Wang X, Zhi P, Fan Q, Zhang M, Chang C. 2019. Wheat CHD3 protein TaCHR729 regulates the cuticular wax biosynthesis required for stimulating germination of Blumeria graminis f.sp. tritici. Journal of Experimental Botany 70:701−713

doi: 10.1093/jxb/ery377
[37]

Kong L, Chang C. 2018. Suppression of wheat TaCDK8/TaWIN1 interaction negatively affects germination of Blumeria graminis f.sp. tritici by interfering with very-long-chain aldehyde biosynthesis. Plant Molecular Biology 96:165−178

doi: 10.1007/s11103-017-0687-4
[38]

Yeats TH, Rose JKC. 2013. The formation and function of plant cuticles. Plant Physiology 163:5−20

doi: 10.1104/pp.113.222737
[39]

Zhu J, Hao P, Chen G, Han C, Li X, et al. 2014. Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.). BMC Plant Biology 14:26

doi: 10.1186/s12870-014-0260-0
[40]

Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, et al. 2006. CER4 encodes an alcohol-forming fatty acyl-coenzyme a reductase involved in cuticular wax production in Arabidopsis. Plant Physiology 142:866−877

doi: 10.1104/pp.106.086785
[41]

Bird D, Beisson F, Brigham A, Shin J, Greer S, et al. 2007. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. The Plant Journal 52:485−498

doi: 10.1111/j.1365-313X.2007.03252.x