| [1] |
Samuels L, Kunst L, Jetter R. 2008. Sealing plant surfaces: cuticular wax formation by epidermal cells. |
| [2] |
Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM. 2009. Networking by small-molecule hormones in plant immunity. |
| [3] |
Inuma T, Khodaparast SA, Takamatsu S. 2007. Multilocus phylogenetic analyses within Blumeria graminis, a powdery mildew fungus of cereals. |
| [4] |
Dean R, Van Kan JAL, Pretorius ZA, Hammond‐Kosack KE, Di Pietro A, et al. 2012. The Top 10 fungal pathogens in molecular plant pathology. |
| [5] |
Zhu Y, Zhu S, Zhang F, Zhao Z, Christensen MJ, et al. 2022. Transcriptomic analyses reveals molecular regulation of photosynthesis by Epichloë endophyte in Achnatherum inebrians under Blumeria graminis infection. |
| [6] |
Glawe DA. 2008. The powdery mildews: a review of the world's most familiar (yet poorly known) plant pathogens. |
| [7] |
Schardl CL, Craven KD, Speakman S, Stromberg A, Lindstrom A, et al. 2008. A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses. |
| [8] |
Nan ZB, Li CJ. 2000. Neotyphodium in native grasses in China and observations on endophyte/host interactions. Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium, Soest, Germany, 27–29 September, 2000. Soest. pp. 41−50 |
| [9] |
Li C, Nan Z. 2004. A new Neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China. |
| [10] |
Chen L, Li X, Li C, Swoboda GA, Young CA, et al. 2015. Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass. |
| [11] |
Zhang XX, Li CJ, Nan ZB, Matthew C. 2012. Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. |
| [12] |
Zhao Z, Kou M, Zhong R, Xia C, Christensen MJ, et al. 2021. Transcriptome analysis revealed plant hormone biosynthesis and response pathway modification by Epichloëgansuensis in Achnatherum inebrians under different soil moisture avail-ability. |
| [13] |
Zhong R, Bastías DA, Zhang X, Li C, Nan, Z. 2022. Vertically transmitted Epichloë systemic endophyte enhances drought tolerance of Achnatherum inebrians host plants through promoting photosynthesis and biomass accumulation. |
| [14] |
Klavins L, Klavins M. 2020. Cuticular wax composition of wild and cultivated northern berries. |
| [15] |
Raven JA, Edwards D. 2004. Physiological evolution of lower embryophytes: adaptations to the terrestrial environment. In The Evolution of Plant Physiology, eds. Hemsley AR, Poole I. USA: Academic Press. pp. 17−41 doi: 10.1016/B978-012339552-8/50003-2 |
| [16] |
Bacete L, Mélida H, Pattathil S, Hahn MG, Molina A, et al. 2017. Characterization of plant cell wall damage-associated molecular patterns regulating immune responses. In Plant Pattern Recognition Receptors, eds. Shan L, He P. New York, USA: Humana Press. pp. 13−23 doi: 10.1007/978-1-4939-6859-6_2 |
| [17] |
Wang X, Kong L, Zhi P, Chang C. 2020. Update on cuticular wax biosynthesis and its roles in plant disease resistance. |
| [18] |
Arya GC, Sarkar S, Manasherova E, Aharoni A, Cohen H. 2021. The plant cuticle: an ancient guardian barrier set against long-standing rivals. |
| [19] |
Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, et al. 2009. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. |
| [20] |
Lee SB, Suh MC. 2015. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. |
| [21] |
Jenks MA, Ashworth EN. 1998. Plant epicuticular waxes: function, production, and genetics. In Horticultural Reviews, ed. Janick J. Hoboken, NJ, USA: John Wiley & Sons, Inc. pp. 1−68 doi: 10.1002/9780470650752.ch1 |
| [22] |
Razeq FM, Kosma DK, Rowland O, Molina I. 2014. Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. |
| [23] |
Riederer M. 2006. Introduction: biology of the plant cuticle. In Annual Plant Reviews Volume 23: Biology of the Plant Cuticle, eds. Riederer M, Müller C. Oxford, UK: Blackwell Publishing Ltd. pp. 1−10 doi: 10.1002/9780470988718.ch1 |
| [24] |
Li CJ, Nan ZB, Liu Y, Paul VH, Dapprich P. 2008. Methodology of endophyte detection of drunken horse grass (Achnatherum inebrians). Edible Fungi of China 27:21−24 (in Chinese) |
| [25] |
Kou MZ, Bastías DA, Christensen MJ, Zhong R, Nan ZB, et al. 2021. The plant salicylic acid signalling pathway regulates the infection of a biotrophic pathogen in grasses associated with an Epichloë endophyte. |
| [26] |
Zhao Z, Ju Y, Kou M, Tian M, Christensen MJ, et al. 2022. Cuticular wax modification by Epichloë endophyte in Achnatherum inebrians under different soil moisture availability. |
| [27] |
Kou MZ. 2021. The responses of Achnatherum inebrians-Epichloë endophyte symbiont to Blumeria graminis. Thesis. University of Lanzhou, China. 100 pp. doi: 10.27204/d.cnki.glzhu.2021.003233 |
| [28] |
Zhao ZR. 2023. The mechanism of response of Achnatherum inebrians-Epichloë endophyte symbiont to drought stress. Thesis. University of Lanzhou, China. 115 pp. doi: 10.27204/d.cnki.glzhu.2023.003385 |
| [29] |
Wang Y, Lv Y, Han T, Liu Y, Jiang Y. 2025. Post-harvest quality changes and molecular responses of epidermal wax in ‘Munage’ grapes with Botrytis cinerea infection. |
| [30] |
Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, et al. 2011. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stesses. |
| [31] |
Pascal S, Bernard A, Deslous P, Gronnier J, Fournier-Goss A, et al. 2019. Arabidopsis CER1-LIKE1 functions in a cuticular very-long-chain alkane-forming complex. |
| [32] |
Javelle M, Vernoud V, Depège-Fargeix N, Arnould C, Oursel D, et al. 2010. Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor OUTER CELL LAYER1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis. |
| [33] |
Mao B, Cheng Z, Lei C, Xu F, Gao S, et al. 2012. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. |
| [34] |
Hansjakob A, Bischof S, Bringmann G, Riederer M, Hildebrandt U. 2010. Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner. |
| [35] |
Hansjakob A, Riederer M, Hildebrandt U. 2011. Wax matters: absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of Blumeria graminis. |
| [36] |
Wang X, Zhi P, Fan Q, Zhang M, Chang C. 2019. Wheat CHD3 protein TaCHR729 regulates the cuticular wax biosynthesis required for stimulating germination of Blumeria graminis f.sp. tritici. |
| [37] |
Kong L, Chang C. 2018. Suppression of wheat TaCDK8/TaWIN1 interaction negatively affects germination of Blumeria graminis f.sp. tritici by interfering with very-long-chain aldehyde biosynthesis. |
| [38] |
Yeats TH, Rose JKC. 2013. The formation and function of plant cuticles. |
| [39] |
Zhu J, Hao P, Chen G, Han C, Li X, et al. 2014. Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.). |
| [40] |
Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, et al. 2006. CER4 encodes an alcohol-forming fatty acyl-coenzyme a reductase involved in cuticular wax production in Arabidopsis. |
| [41] |
Bird D, Beisson F, Brigham A, Shin J, Greer S, et al. 2007. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. |