[1]

Chatterjee D, Randhawa GS. 1952. Standardized names of cultivated plants in India—II. Cereals, pulses, vegetables and spices. Indian Journal of Horticulture 9:64−84

[2]

Dean R, Van Kan JAL, Pretorius ZA, Hammond‐Kosack KE, Di Pietro A, et al. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13:414−430

doi: 10.1111/j.1364-3703.2011.00783.x
[3]

McRac W. 1924. Economic Botany Part-III. Annual Review of Microbiology. pp. 31−35

[4]

Thomidis T. 2014. Fruit rots of pomegranate (cv. Wonderful) in Greece. Australasian Plant Pathology 43:583−588

doi: 10.1007/s13313-014-0300-0
[5]

Munhuweyi K, Lennox CL, Meitz-Hopkins JC, Caleb OJ, Opara UL. 2016. Major diseases of pomegranate (Punica granatum L.), their causes and management – a review. Scientia Horticulturae 211:126−139

doi: 10.1016/j.scienta.2016.08.016
[6]

Jayalaxami K. 2010. Studies on anthracnose of pomegranate caused by Colletotrichum gloeosporioides. (Penz.) Penz & Sacc. M. Sc. (Agri.) Thesis, University of Agricultural Sciences, Dharwad, India

[7]

Amulothu DVRT, Mane SS, Totawar MV, Ingle ST, Bramhankar SB, et al. 2025. Antifungal effect of myco-synthesized silver nanoparticles against anthracnose of tropical fruit crops. Plant Archives 25:2102−2108

[8]

Ashwini N, Srividya S. 2012. Study of mycolytic enzymes of Bacillus sp. against Colletotrichum gloeosporioides causing anthracnose in chili. Acta Biologica Indica 1:81−89

[9]

Pradhanang PM, Momol MT, Olson SM, Jones JB. 2003. Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Disease 87:423−427

doi: 10.1094/PDIS.2003.87.4.423
[10]

Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT. 2012. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 93:95−99

doi: 10.1016/j.saa.2012.03.002
[11]

Velmurugan P, Lee SM, Iydroose M, Lee KJ, Oh BT. 2013. Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Applied Microbiology and Biotechnology 97:361−368

doi: 10.1007/s00253-012-3892-8
[12]

Wan C, Xin S, Li X, Wei X, Yang J. 2025. Advances in metallic nano-pesticides: synthesis, mechanisms, applications, safety, and future perspectives. Academic Journal of Agriculture & Life Sciences 6:33−40

doi: 10.25236/ajals.2025.060105
[13]

Hulkoti NI, Taranath TC. 2014. Biosynthesis of nanoparticles using microbes – a review. Colloids and Surfaces B: Biointerfaces 121:474−483

doi: 10.1016/j.colsurfb.2014.05.027
[14]

Desouky MM, Abou-Saleh RH, Moussa TAA, Fahmy HM. 2025. Nano-chitosan-coated, green-synthesized selenium nanoparticles as a novel antifungal agent against Sclerotinia sclerotiorum: in vitro study. Scientific Reports 15:1004

doi: 10.1038/s41598-024-79574-x
[15]

Kumar K, Bhagat S, Madhuri K, Amaresan N, Srivastava RC. 2010. Morphological and molecular characterization of Colletotrichum species causing anthracnose disease in Bay Islands, India. Journal of Mycology and Plant Pathology 40:322

[16]

Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. 1984. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America 81:8014−8018

doi: 10.1073/pnas.81.24.8014
[17]

Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd edition. New York, USA: Cold Spring Harbor Laboratory Press.

[18]

Huang W, Wang C, Duan H, Bi Y, Wu D, et al. 2018. Synergistic antifungal effect of biosynthesized silver nanoparticles combined with fungicides. International Journal of Agriculture and Biology 20:1225−1229

[19]

Raut RW, Mendhulkar VD, Kashid SB. 2014. Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate. Journal of Photochemistry and Photobiology B: Biology 132:45−55

doi: 10.1016/j.jphotobiol.2014.02.001
[20]

Sabir S, Arshad M, Ilyas N, Naz F, Amjad MS, et al. 2022. Protective role of foliar application of green-synthesized silver nanoparticles against wheat stripe rust disease caused by Puccinia striiformis. Green Synthesis and Catalysis 11:29−43

doi: 10.1515/gps-2022-0004
[21]

Sukhwal A, Jain D, Joshi A, Rawal P, Kushwaha HS. 2017. Biosynthesized silver nanoparticles using aqueous leaf extract of Tagetes patula L. and evaluation of their antifungal activity against phytopathogenic fungi. IET Nanobiotechnology 11:531−537

doi: 10.1049/iet-nbt.2016.0175
[22]

Vincent JM. 1947. Distortion of fungal hyphae in the presence of certain inhibitors. Nature 59:850

doi: 10.1038/159850b0
[23]

Sutton BC. 1992. The genus Colletotrichum. In Colletotrichum: Biology, Pathology and Control, eds. Bailey JA, Jeger MJ. Wallingford, United Kingdom: CAB International. 388 pp.

[24]

Damm U, Cannon PF, Woudenberg JHC, Crous PW. 2012. The Colletotrichum acutatum species complex. Studies in Mycology 73:37−113

doi: 10.3114/sim0010
[25]

Xiang S, Ma X, Shi H, Ma T, Tian C, et al. 2019. Green synthesis of an alginate-coated silver nanoparticle shows high antifungal activity by enhancing its cell membrane penetrating ability. ACS Applied Bio Materials 2:4087−4096

doi: 10.1021/acsabm.9b00590
[26]

Hussein EAM, Mohammad AA, Harraz FA, Ahsan MF. 2019. Biologically synthesized silver nanoparticles for enhancing tetracycline activity against Staphylococcus aureus and Klebsiella pneumoniae. Brazilian Archives of Biology and Technology 62:1−14

doi: 10.1590/1678-4324-2019180266
[27]

Du H, Lo TM, Sitompul J, Chang MW. 2012. Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance. Biochemical and Biophysical Research Communications 424:657−662

doi: 10.1016/j.bbrc.2012.06.134
[28]

Henglein A. 1993. Physicochemical properties of small metal particles in solution "microelectrode" reactions, chemisorption composite metal particles and the atom-to-metal transition. Journal of Physical Chemistry 97:5457−5471

doi: 10.1021/j100123a004
[29]

Mostafa YS, Alamri SA, Alrumman SA, Hashem M, Baka ZA. 2021. Green synthesis of silver nanoparticles using pomegranate and orange peel extracts and their antifungal activity against Alternaria solani, the causal agent of early blight disease of tomato. Plants 10:2363

doi: 10.3390/plants10112363