[1]

Larsson DGJ, Flach CF. 2022. Antibiotic resistance in the environment. Nature Reviews Microbiology 20:257−269

doi: 10.1038/s41579-021-00649-x
[2]

Zhao Y, Li L, Huang Y, Xu X, Liu Z, et al. 2025. Global soil antibiotic resistance genes are associated with increasing risk and connectivity to human resistome. Nature Communications 16:7141

doi: 10.1038/s41467-025-61606-3
[3]

Li LG, Zhang, T. 2023. Plasmid-mediated antibiotic resistance gene transfer under environmental stresses: insights from laboratory-based studies. Science of The Total Environment 887:163870

doi: 10.1016/j.scitotenv.2023.163870
[4]

Ellabaan MMH, Munck C, Porse A, Imamovic L, Sommer MOA. 2021. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nature Communications 12:2435

doi: 10.1038/s41467-021-22757-1
[5]

Xu H, Chen Z, Huang R, Cui Y, Li Q, et al. 2021. Antibiotic resistance gene-carrying plasmid spreads into the plant endophytic bacteria using soil bacteria as carriers. Environmental Science & Technology 55:10462−10470

doi: 10.1021/acs.est.1c01615
[6]

Wang S, Nie W, Gu Q, Wang X, Yang D, et al. 2024. Spread of antibiotic resistance genes in drinking water reservoirs: insights from a deep metagenomic study using a curated database. Water Research 256:121572

doi: 10.1016/j.watres.2024.121572
[7]

Guo XP, Yang Y, Lu DP, Niu ZS, Feng JN, et al. 2018. Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Research 129:277−286

doi: 10.1016/j.watres.2017.11.029
[8]

Ren B, Shi X, Guo J, Jin P. 2025. Interaction of sulfate-reducing bacteria and methanogenic archaea in urban sewers, leads to increased risk of proliferation of antibiotic resistance genes. Environmental Pollution 368:125777

doi: 10.1016/j.envpol.2025.125777
[9]

Kuypers MMM, Marchant HK, Kartal B. 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16:263–276

doi: 10.1038/nrmicro.2018.9
[10]

Kraft B, Jehmlich N, Larsen M, Bristow LA, Könneke M, et al. 2022. Oxygen and nitrogen production by an ammonia-oxidizing archaeon. Science 375:97−100

doi: 10.1126/science.abe6733
[11]

Ping Q, Zhang Z, Ma L, Yan T, Wang L, et al. 2022. The prevalence and removal of antibiotic resistance genes in full-scale wastewater treatment plants: Bacterial host, influencing factors and correlation with nitrogen metabolic pathway. Science of The Total Environment 827:154154

doi: 10.1016/j.scitotenv.2022.154154
[12]

Zhou S, Zhu Y, Yan Y, Wang W, Wang Y. 2019. Deciphering extracellular antibiotic resistance genes (eARGs) in activated sludge by metagenome. Water Research 161:610−620

doi: 10.1016/j.watres.2019.06.048
[13]

Lu KJ, Chang CW, Wang CH, Chen FYH, Huang IY, et al. 2023. An ATP-sensitive phosphoketolase regulates carbon fixation in cyanobacteria. Nature Metabolism 5:1111−11126

doi: 10.1038/s42255-023-00831-w
[14]

Zhang Q, Zhang Z, Lu T, Peijnenburg WJGM, Gillings M, et al. 2020. Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Communications Biology 3:737

doi: 10.1038/s42003-020-01468-1
[15]

Shan E, Zhang X, Li J, Sun C, Teng J, et al. 2023. Alteration of microbial mediated carbon cycle and antibiotic resistance genes during plastisphere formation in coastal area. Chemosphere 344:140420

doi: 10.1016/j.chemosphere.2023.140420
[16]

Guan W, Li L, Zhang C, Zhang D, Xiong Q, et al. 2024. Enhancing carbon fixation and suppressing bacterial chemotaxis through carbon matrix nano-selenium to mitigate emissions of antibiotic resistance genes and virulence factors from chicken manure. Chemical Engineering Journal 483:149076

doi: 10.1016/j.cej.2024.149076
[17]

Tong J, Tang A, Wang H, Liu X, Huang Z, et al. 2019. Microbial community evolution and fate of antibiotic resistance genes along six different full-scale municipal wastewater treatment processes. Bioresource Technology 272:489−500

doi: 10.1016/j.biortech.2018.10.079
[18]

Mathis M, Lacroix F, Hagemann S, Nielsen DM, Ilyina T, et al. 2024. Enhanced CO2 uptake of the coastal ocean is dominated by biological carbon fixation. Nature Climate Change 14:373−379

doi: 10.1038/s41558-024-01956-w
[19]

Smith AR, Kieft B, Mueller R, Fisk MR, Mason OU, et al. 2019. Carbon fixation and energy metabolisms of a subseafloor olivine biofilm. The ISME Journal 13:1737−1749

doi: 10.1038/s41396-019-0385-0
[20]

Tang XF, Guo XP, Kuang L, Chen XJ, Sidikjan N, et al. 2025. Comammox Nitrospira are the dominant ammonia oxidizers in the Yangtze estuarine biofilms. Water Research 273:122969

doi: 10.1016/j.watres.2024.122969
[21]

Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:884−889

doi: 10.1093/bioinformatics/bty560
[22]

Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674−1676

doi: 10.1093/bioinformatics/btv033
[23]

Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, et al. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119

doi: 10.1186/1471-2105-11-119
[24]

Yan Y, Kuramae EE, de Hollander M, Klinkhamer PGL, van Veen JA. 2017. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. The ISME Journal 11:56−66

doi: 10.1038/ismej.2016.108
[25]

Chen XJ, Guo XP, Li MT, Shetaia SA, Li JY, et al. 2026. Anthropogenic-derived nutrition increased microbial structure and nitrogen fixation: implication from different of Manzala and Burullus Lagoons in Nile Delta. Ocean & Coastal Management 271:107957

doi: 10.1016/j.ocecoaman.2025.107957
[26]

Zheng D, Yin G, Liu M, Hou L, Yang Y, et al. 2022. Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China's estuaries. Environmental Pollution 301:119015

doi: 10.1016/j.envpol.2022.119015
[27]

Quan K, Hou J, Zhang Z, Ren Y, Peterson BW, et al. 2022. Water in bacterial biofilms: pores and channels, storage and transport functions. Critical Reviews in Microbiology 48:283−302

doi: 10.1080/1040841X.2021.1962802
[28]

Wu Y, Gong Z, Wang S, Song L. 2023. Occurrence and prevalence of antibiotic resistance genes and pathogens in an industrial park wastewater treatment plant. Science of The Total Environment 880:163278

doi: 10.1016/j.scitotenv.2023.163278
[29]

Pasqua M, Coluccia M, Eguchi Y, Okajima T, Grossi M, et al. 2022. Roles of two-component signal transduction systems in shigella virulence. Biomolecules 12:1321

doi: 10.3390/biom12091321
[30]

Song Y, Rubio A, Jayaswal RK, Silverman JA, Wilkinson BJ. 2013. Additional routes to Staphylococcus aureus daptomycin resistance as revealed by comparative genome sequencing, transcriptional profiling, and phenotypic studies. PLoS One 8:e58469

doi: 10.1371/journal.pone.0058469
[31]

Fang F, Xu H, Chai B, Li D, Nie L, et al. 2023. Neobavaisoflavone inhibits biofilm formation and α-toxin activity of Staphylococcus aureus. Current Microbiology 80:258

doi: 10.1007/s00284-023-03355-4
[32]

Kasapoglu AG, Ilhan E, Aydin M, Yigider E, Inal B, et al. 2023. Characterization of Two-Component System gene (TCS) in melatonin-treated common bean under salt and drought stress. Physiology and Molecular Biology of Plants 29:1733−1754

doi: 10.1007/s12298-023-01406-5
[33]

Dias E, Oliveira M, Manageiro V, Vasconcelos V, Caniça M. 2019. Deciphering the role of cyanobacteria in water resistome: hypothesis justifying the antibiotic resistance (phenotype and genotype) in planktothrix genus. Science of The Total Environment 652:447−454

doi: 10.1016/j.scitotenv.2018.10.167
[34]

Wen L, Dai J, Song J, Ma J, Li X, et al. 2025. Antibiotic resistance genes (ARGs) in microorganisms and their indications for the nitrogen/sulfur cycle in the East China Sea sediments. Journal of Hazardous Materials 488:137280

doi: 10.1016/j.jhazmat.2025.137280
[35]

Zhang D, Li H, Yang Q, Xu Y. 2024. Microbial-mediated conversion of soil organic carbon co-regulates the evolution of antibiotic resistance. Journal of Hazardous Materials 471:134404

doi: 10.1016/j.jhazmat.2024.134404
[36]

Volk A, Lee J. 2023. Cyanobacterial blooms: a player in the freshwater environmental resistome with public health relevance? Environmental Research 216:114612

doi: 10.1016/j.envres.2022.114612
[37]

Gu X, Zhai H, Cheng S. 2021. Fate of antibiotics and antibiotic resistance genes in home water purification systems. Water Research 190:116762

doi: 10.1016/j.watres.2020.116762
[38]

Matviichuk O, Mondamert L, Geffroy C, Gaschet M, Dagot C, et al. 2022. River biofilms microbiome and resistome responses to wastewater treatment plant effluents containing antibiotics. Frontiers in Microbiology 13:795206

doi: 10.3389/fmicb.2022.795206
[39]

Tian J, Ge F, Zhang D, Deng S, Liu X, et al. 2021. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology 10:158

doi: 10.3390/biology10020158
[40]

Metz TT, Putnam SP, Scott GI, Ferry JL. 2022. Shoreline drying of Microseira (Lyngbya) wollei biomass can lead to the release and formation of toxic saxitoxin analogues to the water column. Environmental Science & Technology 56:16866−16872

doi: 10.1021/acs.est.2c05579
[41]

Xu Y, Wu Y, Rittmann B. 2024. Describing chemical migration processes at the sediment–periphytic biofilm–water interface. Environmental Science & Technology 58:3577−3579

doi: 10.1021/acs.est.4c00178
[42]

Zhou L, Wu Y, Liu J, Sun P, Xu Y, et al. 2024. Importance of periphytic biofilms for carbon cycling in paddy fields: a review. Pedosphere 34:36−43

doi: 10.1016/j.pedsph.2023.03.005
[43]

Zhu D, Ma J, Li G, Rillig MC, Zhu YG. 2022. Soil plastispheres as hotspots of antibiotic resistance genes and potential pathogens. The ISME Journal 16:521−532

doi: 10.1038/s41396-021-01103-9
[44]

Bentzon-Tilia M, Traving SJ, Mantikci M, Knudsen-Leerbeck H, Hansen JLS, et al. 2014. Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. The ISME Journal 9:273−285

doi: 10.1038/ismej.2014.119
[45]

Newell SE, Pritchard KR, Foster SQ, Fulweiler RW. 2016. Molecular evidence for sediment nitrogen fixation in a temperate New England estuary. PeerJ 4:e1615

doi: 10.7717/peerj.1615
[46]

de Raús Maúre E, Terauchi G, Ishizaka J, Clinton N, DeWitt M. 2021. Globally consistent assessment of coastal eutrophication. Nature Communications 12:6142

doi: 10.1038/s41467-021-26391-9
[47]

Dixon R, Kahn D. 2004. Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology 2:621−631

doi: 10.1038/nrmicro954
[48]

Rubin BE, Wetmore KM, Price MN, Diamond S, Shultzaberger RK, et al. 2015. The essential gene set of a photosynthetic organism. Proceedings of the National Academy of Sciences of the United States of America 112:E6634−6643

doi: 10.1073/pnas.1519220112
[49]

Li D, Qi R, Yang M, Zhang Y, Yu T. 2011. Bacterial community characteristics under long-term antibiotic selection pressures. Water Research 45:E6063−E6073

doi: 10.1016/j.watres.2011.09.002
[50]

Hungate BA, Mau RL, Schwartz E, Caporaso, JG, Dijkstra P, et al. 2015. Quantitative microbial ecology through stable isotope probing. Applied and Environmental Microbiology 81:7570−7581

doi: 10.1128/AEM.02280-15
[51]

Sañudo-Wilhelmy SA, Gómez-Consarnau L, Suffridge C, Webb EA. 2014. The role of B vitamins in marine biogeochemistry. Annual Review of Marine Science 6:339−367

doi: 10.1146/annurev-marine-120710-100912
[52]

Nesme J, Simonet P. 2015. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environmental Microbiology 17:913−930

doi: 10.1111/1462-2920.12631
[53]

Bhattacharyya SS, Furtak K. 2022. Soil–Plant–Microbe interactions determine soil biological fertility by altering rhizospheric nutrient cycling and biocrust formation. Sustainability 15:625

doi: 10.3390/su15010625
[54]

Gruber N, Galloway JN. 2008. An earth-system perspective of the global nitrogen cycle. Nature 451:293−296

doi: 10.1038/nature06592
[55]

Kim MJ, Kang D, Lee G, Kim K, Kim J, et al. 2023. Interplays between cyanobacterial blooms and antibiotic resistance genes. Environment International 181:108268

doi: 10.1016/j.envint.2023.108268
[56]

Denk-Lobnig M, Wood KB. 2023. Antibiotic resistance in bacterial communities. Current Opinion in Microbiology 74:102306

doi: 10.1016/j.mib.2023.102306
[57]

Biyela PT, Lin J, Bezuidenhout CC. 2004. The role of aquatic ecosystems as reservoirs of antibiotic-resistant bacteria and antibiotic resistance genes. Water Science and Technology 50:45−50

doi: 10.2166/wst.2004.0014
[58]

The Human Microbiome Project Consortium. 2012. A framework for human microbiome research. Nature 486:215−221

doi: 10.1038/nature11209
[59]

Lu J, Li W, Yang Y, Ye F, Lu H, et al. 2022. The impact of different rotation regime on the soil bacterial and fungal communities in an intensively managed agricultural region. Archives of Microbiology 204:142

doi: 10.1007/s00203-021-02615-w
[60]

Unger IM, Goyne KW, Kennedy AC, Kremer RJ, McLain JET, et al. 2013. Antibiotic effects on microbial community characteristics in soils under conservation management practices. Soil Science Society of America Journal 77:100−112

doi: 10.2136/sssaj2012.0099
[61]

Bengtsson-Palme J, Larsson DGJ. 2015. Antibiotic resistance genes in the environment: prioritizing risks. Nature Reviews Microbiology 13:396−396

doi: 10.1038/nrmicro3399-c1
[62]

Zhang J, Sui Q, Tong J, Zhong H, Wang Y, et al. 2018. Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts. Environment International 118:34−43

doi: 10.1016/j.envint.2018.05.029
[63]

Jiang H, Yu T, Yang Y, Yu S, Wu J, et al. 2020. Co-occurrence of antibiotic and heavy metal resistance and sequence type diversity of Vibrio parahaemolyticus isolated from Penaeus vannamei at freshwater farms, seawater farms, and markets in Zhejiang Province, China. Frontiers in Microbiology 11:1294

doi: 10.3389/fmicb.2020.01294