[1]

Gutierrez S, Grados D, Møller AB, de Carvalho Gomes L, Beucher AM, et al. 2023. Unleashing the sequestration potential of soil organic carbon under climate and land use change scenarios in Danish agroecosystems. Science of The Total Environment 905:166921

doi: 10.1016/j.scitotenv.2023.166921
[2]

Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949):123−125

doi: 10.1126/science.1176985
[3]

Tian H, Xu R, Canadell JG, Thompson RL, Winiwarter W, et al. 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586(7828):248−256

doi: 10.1038/s41586-020-2780-0
[4]

Han B, Yao Y, Liu B, Wang Y, Su X, et al. 2024. Relative importance between nitrification and denitrification to N2O from a global perspective. Global Change Biology 30(1):e17082

doi: 10.1111/gcb.17082
[5]

Maestre FT, Eldridge DJ, Soliveres S, Kéfi S, Delgado-Baquerizo M, et al. 2016. Structure and functioning of dryland ecosystems in a changing world. Annual Review of Ecology, Evolution, and Systematics 47:215−237

doi: 10.1146/annurev-ecolsys-121415-032311
[6]

Zhao S, Krichels AH, Stephens EZ, Calma AD, Aronson EL, et al. 2025. Nitrogen availability and changes in precipitation alter microbially mediated NO and N2O emissions from a Pinyon-Juniper dryland. Global Change Biology 31(3):e70159

doi: 10.1111/gcb.70159
[7]

Krichels AH, Jenerette GD, Shulman H, Piper S, Greene AC, et al. 2023. Bacterial denitrification drives elevated N2O emissions in arid southern California drylands. Science Advances 9(49):eadj1989

doi: 10.1126/sciadv.adj1989
[8]

Li L, Hong M, Zhang Y, Paustian K. 2024. Soil N2O emissions from specialty crop systems: a global estimation and meta-analysis. Global Change Biology 30(3):e17233

doi: 10.1111/gcb.17233
[9]

Cen X, Müller C, Kang X, Zhou X, Zhang J, et al. 2024. Nitrogen deposition contributed to a global increase in nitrous oxide emissions from forest soils. Communications Earth & Environment 5(1):532

doi: 10.1038/s43247-024-01647-6
[10]

Pan SY, He KH, Lin KT, Fan C, Chang CT. 2022. Addressing nitrogenous gases from croplands toward low-emission agriculture. npj Climate and Atmospheric Science 5(1):43

doi: 10.1038/s41612-022-00265-3
[11]

Xu C, Zhu H, Wang J, Ji C, Liu Y, et al. 2023. Fertilizer N triggers native soil N-derived N2O emissions by priming gross N mineralization. Soil Biology and Biochemistry 178:108961

doi: 10.1016/j.soilbio.2023.108961
[12]

Osei-Yeboah M, Grabovsky VI, Agam N, Gelfand I. 2024. Water and nitrogen availability define emissions of carbon dioxide and nitrogen oxides from desert soil differently. Soil Biology and Biochemistry 195:109460

doi: 10.1016/j.soilbio.2024.109460
[13]

Kong L, Song J, Ru J, Feng J, Hou J, et al. 2024. Nitrogen addition does not alter symmetric responses of soil respiration to changing precipitation in a semi-arid grassland. Science of The Total Environment 921:171170

doi: 10.1016/j.scitotenv.2024.171170
[14]

Li L, Zheng Z, Wang W, Biederman JA, Xu X, et al. 2020. Terrestrial N2O emissions and related functional genes under climate change: a global meta-analysis. Global Change Biology 26:931−943

doi: 10.1111/gcb.14847
[15]

Liao J, Luo Q, Hu A, Wan W, Tian D, et al. 2022. Soil moisture–atmosphere feedback dominates land N2O nitrification emissions and denitrification reduction. Global Change Biology 28:6404−6418

doi: 10.1111/gcb.16365
[16]

Bracken CJ, Lanigan GJ, Richards KG, Müller C, Tracy SR, et al. 2021. Source partitioning using N2O isotopomers and soil WFPS to establish dominant N2O production pathways from different pasture sward compositions. Science of The Total Environment 781:146515

doi: 10.1016/j.scitotenv.2021.146515
[17]

Krichels AH, Greene AC, Stephens EZ, Zhao S, Schimel JP, et al. 2024. Nitrifier controls on soil NO and N2O emissions in three chaparral ecosystems under contrasting atmospheric N inputs. Soil Biology and Biochemistry 196:109482

doi: 10.1016/j.soilbio.2024.109482
[18]

Qin W, Wei SP, Zheng Y, Choi E, Li X, et al. 2024. Ammonia-oxidizing bacteria and archaea exhibit differential nitrogen source preferences. Nature Microbiology 9(2):524−536

doi: 10.1038/s41564-023-01593-7
[19]

Liu J, Guo Y, Gu H, Liu Z, Hu X, et al. 2023. Conversion of steppe to cropland increases spatial heterogeneity of soil functional genes. The ISME Journal 17:1872−1883

doi: 10.1038/s41396-023-01496-9
[20]

Yu H, Duan Y, Mulder J, Dörsch P, Zhu W, et al. 2023. Universal temperature sensitivity of denitrification nitrogen losses in forest soils. Nature Climate Change 13(7):726−734

doi: 10.1038/s41558-023-01708-2
[21]

Gong Y, Yue P, Li K, Mohammat A, Liu Y. 2021. Different responses of ecosystem CO2 and N2O emissions and CH4 uptake to seasonally asymmetric warming in an Alpine grassland of the Tianshan. Biogeosciences 18(11):3529−3537

doi: 10.5194/bg-18-3529-2021
[22]

Han X, Doménech-Pascual A, Casas-Ruiz JP, Donhauser J, Jordaan K, et al. 2024. Soil organic matter properties drive microbial enzyme activities and greenhouse gas fluxes along an elevational gradient. Geoderma 449:116993

doi: 10.1016/j.geoderma.2024.116993
[23]

Nottingham AT, Whitaker J, Ostle NJ, Bardgett RD, McNamara NP, et al. 2019. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecology Letters 22(11):1889−1899

doi: 10.1111/ele.13379
[24]

Guo X, Lu Y, Yang J, Du F, Kuzyakov Y, et al. 2025. Hydroxyl radical-driven oxidation as a key pathway for greenhouse gas production during soil drying–rewetting. Global Change Biology 31(10):e70552

doi: 10.1111/gcb.70552
[25]

Ma Z, Gao X, Tenuta M, Kuang W, Gui D, et al. 2018. Urea fertigation sources affect nitrous oxide emission from a drip-fertigated cotton field in northwestern China. Agriculture, Ecosystems & Environment 265:22−30

doi: 10.1016/j.agee.2018.05.021
[26]

Kuang W, Wu Y, Gao X, Yin M, Gui D, et al. 2023. Soil profile N2O efflux from a cotton field in arid Northwestern China in response to irrigation and nitrogen management. Frontiers in Environmental Science 11:1123423

doi: 10.3389/fenvs.2023.1123423
[27]

Ma H, Wu Q, Wu X, Zhu Q, Pu S, et al. 2025. Irrigation intensities drive soil N2O emission reduction in drip-irrigated cotton fields. Plants 14(7):987

doi: 10.3390/plants14070987
[28]

Liu C, Zheng X, Zhou Z, Han S, Wang Y, et al. 2010. Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China. Plant and Soil 332:123−134

doi: 10.1007/s11104-009-0278-5
[29]

Wu J, Guo W, Feng J, Li L, Yang H, et al. 2014. Greenhouse gas emissions from cotton field under different irrigation methods and fertilization regimes in arid Northwestern China. The Scientific World Journal 2014:407832

doi: 10.1155/2014/407832
[30]

Yao C, Wu X, Bai H, Gu J, Yao C, et al. 2022. Nitrous oxide emission and grain yield in Chinese winter wheat–summer maize rotation: a meta-analysis. Agronomy 12(10):2305

doi: 10.3390/agronomy12102305
[31]

Su C, Kang R, Huang W, Fang Y. 2021. Temporal patterns of N2O fluxes from a rainfed maize field in Northeast China. Frontiers in Environmental Science 9:668084

doi: 10.3389/fenvs.2021.668084
[32]

Du M, Yuan J, Zhuo M, Sadiq M, Wu J, et al. 2023. Effects of different land use patterns on soil properties and N2O emissions on a semi-arid Loess Plateau of Central Gansu. Frontiers in Ecology and Evolution 11:1128236

doi: 10.3389/fevo.2023.1128236
[33]

Liu R, Hu H, Suter H, Hayden HL, He J, et al. 2016. Nitrification is a primary driver of nitrous oxide production in laboratory microcosms from different land-use soils. Frontiers in Microbiology 7:1373

doi: 10.3389/fmicb.2016.01373
[34]

Homyak PM, Blankinship JC, Marchus K, Lucero DM, Sickman JO, et al. 2016. Aridity and plant uptake interact to make dryland soils hotspots for nitric oxide (NO) emissions. Proceedings of the National Academy of Sciences of the United States of America 113(19):E2608−E2616

doi: 10.1073/pnas.1520496113
[35]

Homyak PM, Kamiyama M, Sickman JO, Schimel JP. 2017. Acidity and organic matter promote abiotic nitric oxide production in drying soils. Global Change Biology 23(4):1735−1747

doi: 10.1111/gcb.13507
[36]

Wu Y, Gao X, Kuang W, Li X, Zeng F, et al. 2022. Long-term fertilization increased nitrous oxide emissions from croplands reclaimed from desert. Atmosphere 13(11):1897

doi: 10.3390/atmos13111897
[37]

Hu BA, Jia HT, Zhu XP, Jiang PA, Yang L, et al. 2015. Diurnal variations of N2O emissions from the alpine wetland at Swan Lake in Bayinbuluke under different soil moisture conditions during summer. Ecology and Environmental Sciences 24:811−817 (in Chinese)

doi: 10.16258/j.cnki.1674-5906.2015.05.014
[38]

Wang C, Chen BL, Yusupjiang Y, Wang QD, Chai ZP. 2019. Effects of nitrogen application rate on ammonia volatilization and nitrous oxide emissions from Korla fragrant pear orchards. Agricultural Research in the Arid Areas 37:157−164 (in Chinese)

[39]

Li YH, Chen TZ, Li FD. 2021. Diffusive fluxes of CO2, CH4, and N2O from soil profiles of typical plant communities in the Ebinur Lake wetland. Ecology and Environmental Sciences 30:667−674 (in Chinese)

doi: 10.16258/j.cnki.1674-5906.2021.04.001
[40]

Kuang W, Gao X, Gui D, Tenuta M, Flaten DN, et al. 2018. Effects of fertilizer and irrigation management on nitrous oxide emission from cotton fields in an extremely arid region of northwestern China. Field Crops Research 229:17−26

doi: 10.1016/j.fcr.2018.09.010
[41]

Lv J, Liu X, Liu H, Wang X, Li K, et al. 2014. Greenhouse gas intensity and net annual global warming potential of cotton cropping systems in an extremely arid region. Nutrient Cycling in Agroecosystems 98(1):15−26

doi: 10.1007/s10705-013-9592-7
[42]

Lv J, Yin X, Dorich C, Olave R, Wang X, et al. 2021. Net field global warming potential and greenhouse gas intensity in typical arid cropping systems of China: a 3-year field measurement from long-term fertilizer experiments. Soil and Tillage Research 212:105053

doi: 10.1016/j.still.2021.105053
[43]

Xiao C, Zhang F, Li Y, Fan J, Ji Q, et al. 2024. Optimizing drip irrigation and nitrogen fertilization regimes to reduce greenhouse gas emissions, increase net ecosystem carbon budget and reduce carbon footprint in saline cotton fields. Agriculture, Ecosystems & Environment 366:108912

doi: 10.1016/j.agee.2024.108912
[44]

Ma J, Wen Y, Ma Z, Liu J, Wei C, et al. 2025. Effect of fertilizer–air-coupled drip irrigation on soil microbial carbon and nitrogen cycling functions. Soil Science Society of America Journal 89(1):e70001

doi: 10.1002/saj2.70001
[45]

Harris E, Diaz-Pines E, Stoll E, Schloter M, Schulz S, et al. 2021. Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting. Science Advances 7(6):eabb7118

doi: 10.1126/sciadv.abb7118
[46]

Liu B, Mørkved PT, Frostegård Å, Bakken LR. 2010. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiology Ecology 72(3):407−417

doi: 10.1111/j.1574-6941.2010.00856.x
[47]

Li K, Gong Y, Song W, He G, Hu Y, et al. 2012. Responses of CH4, CO2 and N2O fluxes to increasing nitrogen deposition in Alpine grassland of the Tianshan Mountains. Chemosphere 88(1):140−143

doi: 10.1016/j.chemosphere.2012.02.077
[48]

Li Y, Dong S, Liu S, Zhou H, Gao Q, et al. 2015. Seasonal changes of CO2, CH4 and N2O fluxes in different types of Alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biology and Biochemistry 80:306−314

doi: 10.1016/j.soilbio.2014.10.026
[49]

Yin M, Gao X, Kuang W, Tenuta M. 2023. Soil N2O emissions and functional genes in response to grazing grassland with livestock: a meta-analysis. Geoderma 436:116538

doi: 10.1016/j.geoderma.2023.116538
[50]

Longbottom TL, Townsend-Small A, Owen LA, Murari MK. 2014. Climatic and topographic controls on soil organic matter storage and dynamics in the Indian Himalaya: Potential carbon cycle–climate change feedbacks. CATENA 119:125−135

doi: 10.1016/j.catena.2014.03.002
[51]

Kou Y, Li C, Tu B, Li J, Li X. 2023. The responses of ammonia-oxidizing microorganisms to different environmental factors determine their elevational distribution and assembly patterns. Microbial Ecology 86(1):485−496

doi: 10.1007/s00248-022-02076-8
[52]

Ding X, Xu Z, Wang Y, Ding X, Xu Z, et al. 2023. Application of MaxEnt model in biomass estimation: an example of spruce forest in the Tianshan Mountains of the central-western part of Xinjiang, China. Forests 14(5):953

doi: 10.3390/f14050953
[53]

Xu G, Chen T, Liu X, Wen T, Wang W, et al. 2024. Spruce trees have stronger drought sensitivity at low- than high-elevation sites across China' s aridity zones. Global Ecology and Conservation 53:e03000

doi: 10.1016/j.gecco.2024.e03000
[54]

Yu L, Zhu J, Ji H, Bai X, Lin Y, et al. 2021. Topography-related controls on N2O emission and CH4 uptake in a tropical rainforest catchment. Science of The Total Environment 775:145616

doi: 10.1016/j.scitotenv.2021.145616
[55]

Ruser R, Flessa H, Russow R, Schmidt G, Buegger F, et al. 2006. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biology and Biochemistry 38(2):263−274

doi: 10.1016/j.soilbio.2005.05.005
[56]

Peng Y, Wang T, Li J, Li N, Bai X, et al. 2024. Temporal-scale-dependent mechanisms of forest soil nitrous oxide emissions under nitrogen addition. Communications Earth & Environment 5(1):512

doi: 10.1038/s43247-024-01680-5
[57]

Buckeridge KM, Edwards KA, Min K, Ziegler SE, Billings SA. 2020. Short- and long-term temperature responses of soil denitrifier net N2O efflux rates, inter-profile N2O dynamics, and microbial genetic potentials. Soil 6(2):399−412

doi: 10.5194/soil-6-399-2020
[58]

Yu L, Zhang Q, Tian Y, Sun W, Scheer C, et al. 2022. Global variations and drivers of nitrous oxide emissions from forests and grasslands. Frontiers in Soil Science 2:1094177

doi: 10.3389/fsoil.2022.1094177