[1]

Chen CM, Yeh DM. 2012. 'Taoyuan No.1 Rose Girl': a double-flowered periwinkle Catharanthus roseus. HortScience 47(8):1175−1176

doi: 10.21273/hortsci.47.8.1175
[2]

Rojas-Sandoval J. 2015. Catharanthus roseus (Madagascar periwinkle). CABI Compendium. UK: CABI. doi: 10.1079/cabicompendium.16884

[3]

Chang C, Yang B, Guo X, Gao C, Wang B, et al. 2024. Genome-wide survey of the potential function of CrLBDs in Catharanthus roseus MIA biosynthesis. Genes 15(9):1140

doi: 10.3390/genes15091140
[4]

Zhou ML, Shao JR, Tang YX. 2009. Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle). Biotechnology and Applied Biochemistry 52(4):313−323

doi: 10.1042/BA20080239
[5]

Ravikumar B, Dhatt KK. 2024. Genetic analysis of flower colour variation in periwinkle (Catharanthus roseus L.) inbred lines. Genetic Resources and Crop Evolution 71:2247−2253

doi: 10.1007/s10722-023-01786-3
[6]

Das K. 2020. Medicinal Plants: Their Importance in Pharmaceutical Sciences. Rajinder Nagar, Ludhiana, India: Kalyani Publisher. www.researchgate.net/publication/343333348_Medicinal_Plants_their_importance_in_Pharmaceutical_Sciences

[7]

Kulkarni RN, Sreevalli Y, Baskaran K. 2005. Allelic differences at two loci govern different mechanisms of intraflower self-pollination in self-pollinating strains of periwinkle. The Journal of Heredity 96(1):71−77

doi: 10.1093/jhered/esi004
[8]

Sreevalli Y, Baskaran K, Kulkarni RN, Kumar S. 2000. Further evidence for the absence of automatic and intra-flower self-pollination in periwinkle. Current Science 79:1648−1649

[9]

Stearn WT. 1975. A synopsis of the genus Catharanthus (Apocynaceae). In The Catharanthus Alkaloids, eds. Taylor‌ WI, Farnsworth NR. New York: Marcel Dekker

[10]

Kohlmünzer S. 1968. Alkaloids of Catharanthus roseus G. Don − new group of biologically active compounds. Postępy Biochemii [Advances in Biochemistry] 14:209−232

[11]

Van Duong T, Thuy PN, Van Hung M. 2025. Morphological characteristics and ITS molecular markers of Catharanthus roseus (L.) G. Don: a medicinal plant in southern Vietnam . Pakistan Journal of Biological Sciences 28:295−301

doi: 10.3923/pjbs.2025.295.301
[12]

Van Der Heijden R, Verpoorte R, Ten Hoopen HJG. 1989. Cell and tissue cultures of Catharanthus roseus (L) G. Don: a literature survey. Plant Cell, Tissue and Organ Culture 18:231−280

doi: 10.1007/BF00043397
[13]

Hosseini H, Chehrazi M, Nabati Ahmadi D, Mahmoodi Sorestani M. 2018. Colchicine-induced autotetraploidy and altered plant cytogenetic and morphophysiological traits in Catharanthus roseus (L.) G. Don. Advances in Horticultural Science 32(2):229−238

doi: 10.13128/ahs-20845
[14]

Magnotta M, Murata J, Chen J, De Luca V. 2006. Identification of a low vindoline accumulating cultivar of Catharanthus roseus (L.) G. Don by alkaloid and enzymatic profiling. Phytochemistry 67(16):1758−1764

doi: 10.1016/j.phytochem.2006.05.018
[15]

Bahari Z, Sazegari S, Niazi A, Afsharifar A. 2020. The application of an Agrobacterium-mediated in planta transformation system in a Catharanthus roseus medicinal plant. Czech Journal of Genetics and Plant Breeding 56(1):34−41

doi: 10.17221/153/2018-CJGPB
[16]

Janaki Ammal EK, Bezbaruah HP. 1963. Induced tetraploidy in Catharanthus roseus (L.) G. Don. Proceedings / Indian Academy of Sciences 57:339−342

doi: 10.1007/BF03052059
[17]

Löve Á. 1981. Chromosome number reports LXXIII. Taxon 30(4):829−861

doi: 10.1002/j.1996-8175.1981.tb04309.x
[18]

Guimarães G, Cardoso L, Oliveira H, Santos C, Duarte P, et al. 2012. Cytogenetic characterization and genome size of the medicinal plant Catharanthus roseus (L.) G. Don. AoB Plants 2012:pls002

doi: 10.1093/aobpla/pls002
[19]

Datta T, Pinky MS, Dash CK, Begum KN. 2020. Orcein and fluorescent banding analysis of two floral types of Catharanthus roseus L. Dhaka University Journal of Biological Sciences 29(2):219−227

doi: 10.3329/dujbs.v29i2.48765
[20]

Nejat N, Valdiani A, Cahill D, Tan YH, Maziah M, et al. 2015. Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): the two faces of a versatile herb. The Scientific World Journal 2015:982412

doi: 10.1155/2015/982412
[21]

Abdelmageed AH, Abdelrahman ME, Alkamali HH. 2021. Genetics of flower colour in pink flowered "Rosea" and white flowers "Alba" in periwinkle Catharanthus roseus (L.) G. Don. GSC Biological and Pharmaceutical Sciences 14(3):166−174

doi: 10.30574/gscbps.2021.14.3.0015
[22]

Lin HK, Wei TY, Chen CM, Yeh DM. 2018. Relationship between phloem fiber and trailing habit, and independent inheritance of growth habit and flower form in periwinkle. Journal of the American Society for Horticultural Science 143(1):67−71

doi: 10.21273/JASHS04292-17
[23]

Mishra P, Kumar S. 2000. Emergence of periwinkle Catharanthus roseus as a model system for molecular biology of alkaloids: phytochemistry, pharmacology, plant biology and in vivo and in vitro cultivation. Journal of Medicinal and Aromatic Plant Sciences 22:306−337

[24]

Pandey S. 2017. Catharanthus roseus: cultivation under stress conditions. In Catharanthus roseus: Current Research and Future Prospects, eds. Naeem M, Aftab T, Khan M. Cham: Springer. pp. 383−397 doi: 10.1007/978-3-319-51620-2_17

[25]

Curry HA. 2012. Naturalising the exotic and exoticising the naturalised: horticulture, natural history and the rosy periwinkle. Environment and History 18(3):343−365

doi: 10.3197/096734012X13400389809292
[26]

Kole C. 2022. The Catharanthus Genome. Cham: Springer. 183 pp. https://link.springer.com/book/10.1007/978-3-030-89269-2

[27]

Kulkarni RN, Chandrashekar RS, Dimri BP. 1984. Induced autotetraploidy in Catharanthus roseus − a preliminary report. Current Science 53(9):484−486

[28]

Gogitidze TR, Maisuradze NI. 1980. Approaches to selection of Catharanthus roseus. Khimiko-Farmatsevticheskii Zhurnal 14(10):56−59

[29]

Yamamoto K, Takahashi K, Mizuno H, Anegawa A, Ishizaki K, et al. 2016. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS. Proceedings of the National Academy of Sciences of the United States of America 113(14):3891−3896

doi: 10.1073/pnas.1521959113
[30]

Ravikumar B, Dhatt KK. 2023. Exploitation of heterosis in a diallel crosses of periwinkle (Catharanthus roseus) for morphological traits. The Indian Journal of Agricultural Sciences 93(5):495−500

doi: 10.56093/ijas.v93i5.132433
[31]

Zonneveld BJM, Leitch IJ, Bennett MD. 2005. First nuclear DNA amounts in more than 300 angiosperms. Annals of Botany 96:229−244

doi: 10.1093/aob/mci170
[32]

Kellner F, Kim J, Clavijo BJ, Hamilton JP, Childs KL, et al. 2015. Genome-guided investigation of plant natural product biosynthesis. The Plant Journal 82:680−692

doi: 10.1111/tpj.12827
[33]

Xu Z, Wang G, Wang Q, Li X, Zhang G, et al. 2023. A near-complete genome assembly of Catharanthus roseus and insights into its vinblastine biosynthesis and high susceptibility to the Huanglongbing pathogen. Plant Communications 4(6):100661

doi: 10.1016/j.xplc.2023.100661
[34]

Li C, Wood JC, Vu AH, Hamilton JP, Rodriguez Lopez CE, et al. 2023. Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nature Chemical Biology 19(8):1031−1041

doi: 10.1038/s41589-023-01327-0
[35]

Sun S, Shen X, Li Y, Li Y, Wang S, et al. 2023. Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism. Nature Plants 9:179−190

doi: 10.1038/s41477-022-01291-y
[36]

Miyajima D. 2015. Pollination and seed set in vinca [Catharanthus roseus (L.) G. Don]. The Journal of Horticultural Science and Biotechnology 79:771−775

doi: 10.1080/14620316.2004.11511841
[37]

Veyret Y. 1974. Quelques données pour la biosystématique de pervenches malgaches (genre Catharanthus G. Don, Apocynaceae) [Some data on the biosystematics of Madagascar periwinkle (genus Catharanthus G. Don, Apocynaceae)]. Candollea 29:297−307 (in French)

[38]

Plaizier AC. 1981. A revision of Catharanthus roseus (L.) G. Don (Apocynaceae). Mededelingen Landbouwhogeschool Wageningen 81:1−12

[39]

Sevestre-Rigouzzo M, Nef-Campa C, Ghesquière A, Chrestin H. 1992. Genetic diversity and alkaloid production in Catharanthus roseus, C. trichophyllus and their hybrids. Euphytica 66:151−159

doi: 10.1007/BF00023520
[40]

Chikh-Rouhou H, Singh S, Priyadarsini S, Mallor C. 2025. Onion male sterility: genetics, genomics and breeding. Horticulturae 11(5):539

doi: 10.3390/horticulturae11050539
[41]

Vasupalli N, Mogilicherla K, Shaik V, Rao KRSS, Bhat SR, et al. 2025. Advances in plant male sterility for hybrid seed production: an overview of conditional nuclear male sterile lines and biotechnology-based male sterile systems. Frontiers in Plant Science 16:1540693

doi: 10.3389/fpls.2025.1540693
[42]

Schnell L. 1943. Self-sterility in Vinca rosea. The Proceedings of the Oklahoma Academy of Science 23:21

[43]

Levy A, Milo J, Ashri A, Palevitch D. 1983. Heterosis and correlation analysis of the vegetative components and ajmalicine content in the roots of the medicinal plant- Catharanthus roseus (L.) G. Don. Euphytica 32:557−564

doi: 10.1007/BF00021468
[44]

Jhang T, Dwivedi S, Sharma S. 2022. Classical breeding and trait genetics in Catharanthus. In The Catharanthus Genome, ed. Kole C. Cham: Springer. doi: 10.1007/978-3-030-89269-2_3

[45]

Tsai YT, Yeh DM. 2021. Male Sterility, inheritance of eye zone color, and selection of potted plants in periwinkle. Journal of the Taiwan Society for Horticultural Science 67:13−25 (in Chinese)

[46]

Sreevalli Y, Baskaran K, Kulkarni RN. 2003. Inheritance of functional male sterility in the medicinal plant, periwinkle. Indian Journal of Genetics and Plant Breeding 63(4):365−366

[47]

Kulkarni RN, Baskaran K, Shyamaprasad DV, Kulkarni SS. 2009. Individual and combined effects of plant height reducing genes in periwinkle. Euphytica 170(3):309−316

doi: 10.1007/s10681-009-9981-9
[48]

Kulkarni RN, Baskaran K. 2013. Individual and combined effects of genes producing opposite effects on plant height in periwinkle (Catharanthus roseus). Journal of Crop Science and Biotechnology 16(2):123−129

doi: 10.1007/s12892-012-0017-y
[49]

Chaudhary S, Sharma V, Prasad M, Bhatia S, Tripathi BN, et al. 2011. Characterization and genetic linkage mapping of the horticulturally important mutation leafless inflorescence (lli) in periwinkle Catharanthus roseus. Scientia Horticulturae 129(1):142−153

doi: 10.1016/j.scienta.2011.02.025
[50]

Yue Y, Ren M, Quan Y, Lian M, Piao X, et al. 2020. Autopolyploidy in Chrysanthemum cv. 'Gongju' improved cold tolerance. Plant Molecular Biology Reporter 38:655−665

doi: 10.1007/s11105-020-01225-y
[51]

Wu J, Cheng X, Kong B, Zhou Q, Sang Y, et al. 2022. In vitro octaploid induction of Populus hopeiensis with colchicine. BMC Plant Biology 22:176

doi: 10.1186/s12870-022-03571-3
[52]

Dnyansagar VR, Sudhakaran IV. 1970. Induced tetraploidy in Vinca rosea Linn. Cytologia 35:227−241

doi: 10.1508/cytologia.35.227
[53]

Kulkarni RN, Sreevalli Y, Baskaran K, Kumar S. 2001. The mechanism and inheritance of intraflower self-pollination in self-pollinating variant strains of periwinkle. Plant Breeding 120:247−250

doi: 10.1046/j.1439-0523.2001.00609.x
[54]

Gogitidze TR, Laptev YP. 1981. Comparative evaluation of experimental polyploids of Catharanthus roseus and their parent forms. Genetika 17(3):563−564

[55]

Dnyansagar, Sudhakaran. 1977. Seed development in diploid and tetraploid of Vinca rosea syn. Catharanthus roseus (Lochnera rosea). Proceedings of the Indian National Science Academy 43:133−141

[56]

Xing SH, Guo XB, Wang Q, Pan QF, Tian YS, et al. 2011. Induction and flow cytometry Identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don. BioMed Research International 2011:793198

doi: 10.1155/2011/793198
[57]

Nourozi E, Hedayati A, Madani H, Hosseini B, Hemmaty S. 2025. In vitro synthetic polyploidization and enhancement of anticancer compounds in Catharanthus roseus (L.) G. Don important cultivars. Scientific Reports 15:6563

doi: 10.1038/s41598-025-91103-y
[58]

Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, et al. 2016. Next generation breeding. Plant Science 242:3−13

doi: 10.1016/j.plantsci.2015.07.010
[59]

Ye J, Cui X. 2019. Next-generation crop breeding methods. Molecular Plant 12(4):470−471

doi: 10.1016/j.molp.2019.03.007
[60]

Murata J, Bienzle D, Brandle JE, Sensen CW, De Luca V. 2006. Expressed sequence tags from Madagascar periwinkle (Catharanthus roseus). FEBS Letters 580(18):4501−4507

doi: 10.1016/j.febslet.2006.07.020
[61]

Cuello C, Stander EA, Jansen HJ, Dugé De Bernonville T, Oudin A, et al. 2022. An updated version of the Madagascar periwinkle genome. F1000Research 11:1541

doi: 10.12688/f1000research.129212.1
[62]

Hasan N, Choudhary S, Naaz N, Sharma N, Laskar RA. 2021. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology 19(1):128

doi: 10.1186/s43141-021-00231-1
[63]

Gupta S, Pandey-Rai S, Srivastava S, Naithani SC, Prasad M, et al. 2008. Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus. Journal of Genetics 86:259−268

doi: 10.1007/s12041-007-0033-8
[64]

Shokeen B, Choudhary S, Sethy NK, Bhatia S. 2011. Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus roseus. Annals of botany 108(2):321−336

doi: 10.1093/aob/mcr162
[65]

Sharma V, Chaudhary S, Srivastava S, Pandey R, Kumar S. 2012. Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus. Journal of Genetics 91:49−69

doi: 10.1007/s12041-012-0150-x
[66]

Chaudhary S, Pandey R, Sharma V, Tripathi BN, Kumar S. 2013. Detection and mapping of QTLs affecting contents of pharmaceutical alkaloids in leaf and root of Catharanthus roseus. Agricultural Research 2:9−23

doi: 10.1007/s40003-013-0050-1
[67]

Rani J, Gulia V, Dhanda N, Kapoor M. 2024. Phenotypic characterization of periwinkle (Catharanthus roseus L.G. Don.) for the selection of promising materials for breeding programs. Discover Plants 1:34

doi: 10.1007/s44372-024-00032-z
[68]

Song C, Liu X, Xu M, Ying M, Fu J, et al. 2025. Germplasm resource and genetic breeding of Zinnia: a review. Ornamental Plant Research 5:e015

doi: 10.48130/opr-0025-0014
[69]

Li C, Dong N, Zhao Y, Wu S, Liu Z, et al. 2021. A review for the breeding of orchids: current achievements and prospects. Horticultural Plant Journal 7(5):380−392

doi: 10.1016/j.hpj.2021.02.006
[70]

Kulkarni RN, Baskaran K, Sreevalli Y. 2008. Genetics of corolla colour in periwinkle: relationship between genes determining violet, orange-red and magenta corolla. Journal of Applied Horticulture 10(1):20−23

doi: 10.37855/jah.2008.v10i01.04
[71]

Sreevalli Y, Kulkarni RN, Baskaran K. 2002. Inheritance of flower color in periwinkle: orange-red corolla and white eye. The Journal of Heredity 93:55−57

doi: 10.1093/jhered/93.1.55
[72]

Milo J, Levy A, Akavia N, Ashri A, Palevitch D. 1985. Inheritance of corolla colour and anthocyanin pigments in periwinkle Catharanthus roseus (L.) G. Don. Zeitschrift für Pflanzenzüchtung 95:352−360

[73]

Flory. 1944. Inheritance studies of flower colour in periwinkle. Proceedings of American Society of Horticultural Science 44:525−526

[74]

Simmonds NW. 1960. Flower colour in Lochnera rosea. Heredity 14:253−261

doi: 10.1038/hdy.1960.29
[75]

Xiao Y, Tang Y, Huang X, Zeng L, Liao Z. 2023. Integrated transcriptomics and metabolomics analysis reveal anthocyanin biosynthesis for petal color formation in Catharanthus roseus. Agronomy 13(9):2290

doi: 10.3390/agronomy13092290
[76]

Zhang Q, Zhang H, Sun L, Fan G, Ye M, et al. 2018. The genetic architecture of floral traits in the woody plant Prunus mume. Nature Communications 9:1702

doi: 10.1038/s41467-018-04093-z
[77]

Chen CM, Wei TY, Yeh DM. 2012. Morphology and inheritance of double floweredness in Catharanthus roseus. HortScience 47(12):1679−1681

doi: 10.21273/HORTSCI.47.12.1679
[78]

Liang Y, Zhao P, Liu B, Sun D, Ruan J, et al. 2024. Genetic mechanisms of petal morphogenesis in Eustoma grandiflorum. Scientia Horticulturae 324:112558

doi: 10.1016/j.scienta.2023.112558
[79]

Huang TH, Lu YC, Chen YH, Shen RS. 2024. Morphology and inheritance of wavy flower form in periwinkle (Catharanthus roseus (L.) G. Don). Plants 13(16):2272

doi: 10.3390/plants13162272
[80]

Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli GB, et al. 2003. Toward the analysis of the Petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. The Plant Cell 15(11):2680−2693

doi: 10.1105/tpc.017376
[81]

Noor SH, Ushijima K, Murata A, Yoshida K, Tanabe M, et al. 2014. Double flower formation induced by silencing of C-class MADS-box genes and its variation among petunia cultivars. Scientia Horticulturae 178:1−7

doi: 10.1016/j.scienta.2014.07.029
[82]

Chen HW, Lee PL, Wang CN, Hsu HJ, Chen JC. 2020. Silencing of PhLA, a CIN-TCP gene, causes defected petal conical epidermal cell formation and results in reflexed corolla lobes in petunia. Botanical Studies 61:24

doi: 10.1186/s40529-020-00300-7
[83]

Wang Y, Li J. 2006. Genes controlling plant architecture. Current Opinion in Biotechnology 17(2):123−129

doi: 10.1016/j.copbio.2006.02.004
[84]

Wang B, Smith SM, Li J. 2018. Genetic regulation of shoot architecture. Annual Review of Plant Biology 69:437−468

doi: 10.1146/annurev-arplant-042817-040422
[85]

Zhang X, Ding L, Song A, Li S, Liu J, et al. 2022. Dwarf and Robust Plant regulates plant height via modulating gibberellin biosynthesis in chrysanthemum. Plant Physiology 190(4):2484−2500

doi: 10.1093/plphys/kiac437
[86]

Fichtner F, Humphreys JL, Barbier FF, Feil R, Westhoff P, et al. 2024. Strigolactone signalling inhibits trehalose 6-phosphate signalling independently of BRC1 to suppress shoot branching. New Phytologist 244(3):900−913

doi: 10.1111/nph.20072
[87]

Olson HA, Benson DM. 2011. Characterization of Phytophthora spp. on floriculture crops in north Carolina. Plant Disease 95(8):1013−1020

doi: 10.1094/PDIS-09-10-0619
[88]

McGovern RJ, McSorley R, Urs RR. 2000. Reduction of Phytophthora blight of Madagascar periwinkle in Florida by soil solarization in autumn. Plant Disease 84(2):185−191

doi: 10.1094/PDIS.2000.84.2.185
[89]

Yandoc CB, Rosskopf EN, Shah DA, Albano JP. 2007. Effect of fertilization and biopesticides on the infection of Catharanthus roseus by Phytophthora nicotianae. Plant Disease 91(11):1477−1483

doi: 10.1094/PDIS-91-11-1477
[90]

Kulkarni RN, Baskaran K, Chandrashekara RS, Kumar S. 1999. Inheritance of morphological traits of periwinkle mutants with modified contents and yields of leaf and root alkaloids. Plant Breeding 118(1):71−74

doi: 10.1046/j.1439-0523.1999.118001071.x
[91]

Kulkarni RN, Baskaran K, Jhang T. 2016. Breeding medicinal plant, periwinkle [Catharanthus roseus (L) G. Don]: a review. Plant Genetic Resources 14(4):283−302

doi: 10.1017/S1479262116000150
[92]

Kumar S, Chaudhary S, Kumari R, Sharma V, Kumar A. 2012. Development of improved horticultural genotypes characterized by novel over-flowering inflorescence trait in periwinkle Catharanthus roseus. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 82(3):399−404

doi: 10.1007/s40011-012-0048-7
[93]

Din A, Wani MA, Jin C, Nazki IT, Ma J, et al. 2025. Post-genomic era of CRISPR/Cas technology in ornamental plants: advantages, limitations, and prospects. Ornamental Plant Research 5:e010

doi: 10.48130/opr-0025-0007
[94]

Cheng B, Du W, Bourke PM, Yu C. 2024. Population genetics of horticultural crops aided by multi-omics technology and its implications for ornamental plants. Ornamental Plant Research 4:e024

doi: 10.48130/opr-0024-0020
[95]

Grützner R, Martin P, Horn C, Mortensen S, Cram EJ, et al. 2021. High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns. Plant Communications 2(2):100135

doi: 10.1016/j.xplc.2020.100135
[96]

Makki RM, Saeedi AA, Khan TK, Ali HM, Ramadan AM. 2019. Single nucleotide polymorphism analysis in plastomes of eight Catharanthus roseus cultivars. Biotechnology & Biotechnological Equipment 33(1):419−428

doi: 10.1080/13102818.2019.1579671
[97]

Das A, Sarkar S, Bhattacharyya S, Gantait S. 2020. Biotechnological advancements in Catharanthus roseus (L.) G. Don. Applied Microbiology and Biotechnology 104:4811−4835

doi: 10.1007/s00253-020-10592-1
[98]

Shariatipour N, Heidari B, Richards C. 2023. Meta-QTL for morphological traits and pharmaceutical alkaloids in periwinkle (Catharanthus roseus (L.) 'G. Don'). The Journal of Horticultural Science and Biotechnology 98(1):87−98

doi: 10.1080/14620316.2022.2091485
[99]

Burlat V, Papon N, Courdavault V. 2023. Medicinal plants enter the single-cell multi-omics era. Trends in Plant Science 28(11):1205−1207

doi: 10.1016/j.tplants.2023.08.005
[100]

Lacava PT, Azevedo JL. 2013. Biological control of insect-pest and diseases by endophytes. In Advances in Endophytic Research, eds. Verma VC, Gange AC. New Delhi: Springer. pp. 231−256 doi:10.1007/978-81-322-1575-2_13

[101]

Daughtrey ML, Wick RL, Peterson JL. 2000. Botrytis blight of flowering potted plants. Plant Health Progress 1:11

doi: 10.1094/php-2000-0605-01-hm