| [1] |
Chen CM, Yeh DM. 2012. 'Taoyuan No.1 Rose Girl': a double-flowered periwinkle Catharanthus roseus. |
| [2] |
Rojas-Sandoval J. 2015. Catharanthus roseus (Madagascar periwinkle). CABI Compendium. UK: CABI. doi: 10.1079/cabicompendium.16884 |
| [3] |
Chang C, Yang B, Guo X, Gao C, Wang B, et al. 2024. Genome-wide survey of the potential function of CrLBDs in Catharanthus roseus MIA biosynthesis. |
| [4] |
Zhou ML, Shao JR, Tang YX. 2009. Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle). |
| [5] |
Ravikumar B, Dhatt KK. 2024. Genetic analysis of flower colour variation in periwinkle (Catharanthus roseus L.) inbred lines. |
| [6] |
Das K. 2020. Medicinal Plants: Their Importance in Pharmaceutical Sciences. Rajinder Nagar, Ludhiana, India: Kalyani Publisher. www.researchgate.net/publication/343333348_Medicinal_Plants_their_importance_in_Pharmaceutical_Sciences |
| [7] |
Kulkarni RN, Sreevalli Y, Baskaran K. 2005. Allelic differences at two loci govern different mechanisms of intraflower self-pollination in self-pollinating strains of periwinkle. |
| [8] |
Sreevalli Y, Baskaran K, Kulkarni RN, Kumar S. 2000. Further evidence for the absence of automatic and intra-flower self-pollination in periwinkle. Current Science 79:1648−1649 |
| [9] |
Stearn WT. 1975. A synopsis of the genus Catharanthus (Apocynaceae). In The Catharanthus Alkaloids, eds. Taylor WI, Farnsworth NR. New York: Marcel Dekker |
| [10] |
Kohlmünzer S. 1968. Alkaloids of Catharanthus roseus G. Don − new group of biologically active compounds. Postępy Biochemii [Advances in Biochemistry] 14:209−232 |
| [11] |
Van Duong T, Thuy PN, Van Hung M. 2025. Morphological characteristics and ITS molecular markers of Catharanthus roseus (L.) G. Don: a medicinal plant in southern Vietnam . |
| [12] |
Van Der Heijden R, Verpoorte R, Ten Hoopen HJG. 1989. Cell and tissue cultures of Catharanthus roseus (L) G. Don: a literature survey. |
| [13] |
Hosseini H, Chehrazi M, Nabati Ahmadi D, Mahmoodi Sorestani M. 2018. Colchicine-induced autotetraploidy and altered plant cytogenetic and morphophysiological traits in Catharanthus roseus (L.) G. Don. |
| [14] |
Magnotta M, Murata J, Chen J, De Luca V. 2006. Identification of a low vindoline accumulating cultivar of Catharanthus roseus (L.) G. Don by alkaloid and enzymatic profiling. |
| [15] |
Bahari Z, Sazegari S, Niazi A, Afsharifar A. 2020. The application of an Agrobacterium-mediated in planta transformation system in a Catharanthus roseus medicinal plant. |
| [16] |
Janaki Ammal EK, Bezbaruah HP. 1963. Induced tetraploidy in Catharanthus roseus (L.) G. Don. |
| [17] |
Löve Á. 1981. Chromosome number reports LXXIII. |
| [18] |
Guimarães G, Cardoso L, Oliveira H, Santos C, Duarte P, et al. 2012. Cytogenetic characterization and genome size of the medicinal plant Catharanthus roseus (L.) G. Don. |
| [19] |
Datta T, Pinky MS, Dash CK, Begum KN. 2020. Orcein and fluorescent banding analysis of two floral types of Catharanthus roseus L. |
| [20] |
Nejat N, Valdiani A, Cahill D, Tan YH, Maziah M, et al. 2015. Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): the two faces of a versatile herb. |
| [21] |
Abdelmageed AH, Abdelrahman ME, Alkamali HH. 2021. Genetics of flower colour in pink flowered "Rosea" and white flowers "Alba" in periwinkle Catharanthus roseus (L.) G. Don. |
| [22] |
Lin HK, Wei TY, Chen CM, Yeh DM. 2018. Relationship between phloem fiber and trailing habit, and independent inheritance of growth habit and flower form in periwinkle. |
| [23] |
Mishra P, Kumar S. 2000. Emergence of periwinkle Catharanthus roseus as a model system for molecular biology of alkaloids: phytochemistry, pharmacology, plant biology and in vivo and in vitro cultivation. Journal of Medicinal and Aromatic Plant Sciences 22:306−337 |
| [24] |
Pandey S. 2017. Catharanthus roseus: cultivation under stress conditions. In Catharanthus roseus: Current Research and Future Prospects, eds. Naeem M, Aftab T, Khan M. Cham: Springer. pp. 383−397 doi: 10.1007/978-3-319-51620-2_17 |
| [25] |
Curry HA. 2012. Naturalising the exotic and exoticising the naturalised: horticulture, natural history and the rosy periwinkle. |
| [26] |
Kole C. 2022. The Catharanthus Genome. Cham: Springer. 183 pp. https://link.springer.com/book/10.1007/978-3-030-89269-2 |
| [27] |
Kulkarni RN, Chandrashekar RS, Dimri BP. 1984. Induced autotetraploidy in Catharanthus roseus − a preliminary report. Current Science 53(9):484−486 |
| [28] |
Gogitidze TR, Maisuradze NI. 1980. Approaches to selection of Catharanthus roseus. Khimiko-Farmatsevticheskii Zhurnal 14(10):56−59 |
| [29] |
Yamamoto K, Takahashi K, Mizuno H, Anegawa A, Ishizaki K, et al. 2016. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS. |
| [30] |
Ravikumar B, Dhatt KK. 2023. Exploitation of heterosis in a diallel crosses of periwinkle (Catharanthus roseus) for morphological traits. |
| [31] |
Zonneveld BJM, Leitch IJ, Bennett MD. 2005. First nuclear DNA amounts in more than 300 angiosperms. |
| [32] |
Kellner F, Kim J, Clavijo BJ, Hamilton JP, Childs KL, et al. 2015. Genome-guided investigation of plant natural product biosynthesis. |
| [33] |
Xu Z, Wang G, Wang Q, Li X, Zhang G, et al. 2023. A near-complete genome assembly of Catharanthus roseus and insights into its vinblastine biosynthesis and high susceptibility to the Huanglongbing pathogen. |
| [34] |
Li C, Wood JC, Vu AH, Hamilton JP, Rodriguez Lopez CE, et al. 2023. Single-cell multi-omics in the medicinal plant Catharanthus roseus. |
| [35] |
Sun S, Shen X, Li Y, Li Y, Wang S, et al. 2023. Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism. |
| [36] |
Miyajima D. 2015. Pollination and seed set in vinca [Catharanthus roseus (L.) G. Don]. |
| [37] |
Veyret Y. 1974. Quelques données pour la biosystématique de pervenches malgaches (genre Catharanthus G. Don, Apocynaceae) [Some data on the biosystematics of Madagascar periwinkle (genus Catharanthus G. Don, Apocynaceae)]. Candollea 29:297−307 (in French) |
| [38] |
Plaizier AC. 1981. A revision of Catharanthus roseus (L.) G. Don (Apocynaceae). Mededelingen Landbouwhogeschool Wageningen 81:1−12 |
| [39] |
Sevestre-Rigouzzo M, Nef-Campa C, Ghesquière A, Chrestin H. 1992. Genetic diversity and alkaloid production in Catharanthus roseus, C. trichophyllus and their hybrids. |
| [40] |
Chikh-Rouhou H, Singh S, Priyadarsini S, Mallor C. 2025. Onion male sterility: genetics, genomics and breeding. |
| [41] |
Vasupalli N, Mogilicherla K, Shaik V, Rao KRSS, Bhat SR, et al. 2025. Advances in plant male sterility for hybrid seed production: an overview of conditional nuclear male sterile lines and biotechnology-based male sterile systems. |
| [42] |
Schnell L. 1943. Self-sterility in Vinca rosea. The Proceedings of the Oklahoma Academy of Science 23:21 |
| [43] |
Levy A, Milo J, Ashri A, Palevitch D. 1983. Heterosis and correlation analysis of the vegetative components and ajmalicine content in the roots of the medicinal plant- Catharanthus roseus (L.) G. Don. |
| [44] |
Jhang T, Dwivedi S, Sharma S. 2022. Classical breeding and trait genetics in Catharanthus. In The Catharanthus Genome, ed. Kole C. Cham: Springer. doi: 10.1007/978-3-030-89269-2_3 |
| [45] |
Tsai YT, Yeh DM. 2021. Male Sterility, inheritance of eye zone color, and selection of potted plants in periwinkle. Journal of the Taiwan Society for Horticultural Science 67:13−25 (in Chinese) |
| [46] |
Sreevalli Y, Baskaran K, Kulkarni RN. 2003. Inheritance of functional male sterility in the medicinal plant, periwinkle. Indian Journal of Genetics and Plant Breeding 63(4):365−366 |
| [47] |
Kulkarni RN, Baskaran K, Shyamaprasad DV, Kulkarni SS. 2009. Individual and combined effects of plant height reducing genes in periwinkle. |
| [48] |
Kulkarni RN, Baskaran K. 2013. Individual and combined effects of genes producing opposite effects on plant height in periwinkle (Catharanthus roseus). |
| [49] |
Chaudhary S, Sharma V, Prasad M, Bhatia S, Tripathi BN, et al. 2011. Characterization and genetic linkage mapping of the horticulturally important mutation leafless inflorescence (lli) in periwinkle Catharanthus roseus. |
| [50] |
Yue Y, Ren M, Quan Y, Lian M, Piao X, et al. 2020. Autopolyploidy in Chrysanthemum cv. 'Gongju' improved cold tolerance. |
| [51] |
Wu J, Cheng X, Kong B, Zhou Q, Sang Y, et al. 2022. In vitro octaploid induction of Populus hopeiensis with colchicine. |
| [52] |
Dnyansagar VR, Sudhakaran IV. 1970. Induced tetraploidy in Vinca rosea Linn. |
| [53] |
Kulkarni RN, Sreevalli Y, Baskaran K, Kumar S. 2001. The mechanism and inheritance of intraflower self-pollination in self-pollinating variant strains of periwinkle. |
| [54] |
Gogitidze TR, Laptev YP. 1981. Comparative evaluation of experimental polyploids of Catharanthus roseus and their parent forms. Genetika 17(3):563−564 |
| [55] |
Dnyansagar, Sudhakaran. 1977. Seed development in diploid and tetraploid of Vinca rosea syn. Catharanthus roseus (Lochnera rosea). Proceedings of the Indian National Science Academy 43:133−141 |
| [56] |
Xing SH, Guo XB, Wang Q, Pan QF, Tian YS, et al. 2011. Induction and flow cytometry Identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don. |
| [57] |
Nourozi E, Hedayati A, Madani H, Hosseini B, Hemmaty S. 2025. In vitro synthetic polyploidization and enhancement of anticancer compounds in Catharanthus roseus (L.) G. Don important cultivars. |
| [58] |
Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, et al. 2016. Next generation breeding. |
| [59] |
Ye J, Cui X. 2019. Next-generation crop breeding methods. |
| [60] |
Murata J, Bienzle D, Brandle JE, Sensen CW, De Luca V. 2006. Expressed sequence tags from Madagascar periwinkle (Catharanthus roseus). |
| [61] |
Cuello C, Stander EA, Jansen HJ, Dugé De Bernonville T, Oudin A, et al. 2022. An updated version of the Madagascar periwinkle genome. |
| [62] |
Hasan N, Choudhary S, Naaz N, Sharma N, Laskar RA. 2021. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. |
| [63] |
Gupta S, Pandey-Rai S, Srivastava S, Naithani SC, Prasad M, et al. 2008. Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus. |
| [64] |
Shokeen B, Choudhary S, Sethy NK, Bhatia S. 2011. Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus roseus. |
| [65] |
Sharma V, Chaudhary S, Srivastava S, Pandey R, Kumar S. 2012. Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus. |
| [66] |
Chaudhary S, Pandey R, Sharma V, Tripathi BN, Kumar S. 2013. Detection and mapping of QTLs affecting contents of pharmaceutical alkaloids in leaf and root of Catharanthus roseus. |
| [67] |
Rani J, Gulia V, Dhanda N, Kapoor M. 2024. Phenotypic characterization of periwinkle (Catharanthus roseus L.G. Don.) for the selection of promising materials for breeding programs. |
| [68] |
Song C, Liu X, Xu M, Ying M, Fu J, et al. 2025. Germplasm resource and genetic breeding of Zinnia: a review. |
| [69] |
Li C, Dong N, Zhao Y, Wu S, Liu Z, et al. 2021. A review for the breeding of orchids: current achievements and prospects. |
| [70] |
Kulkarni RN, Baskaran K, Sreevalli Y. 2008. Genetics of corolla colour in periwinkle: relationship between genes determining violet, orange-red and magenta corolla. |
| [71] |
Sreevalli Y, Kulkarni RN, Baskaran K. 2002. Inheritance of flower color in periwinkle: orange-red corolla and white eye. |
| [72] |
Milo J, Levy A, Akavia N, Ashri A, Palevitch D. 1985. Inheritance of corolla colour and anthocyanin pigments in periwinkle Catharanthus roseus (L.) G. Don. Zeitschrift für Pflanzenzüchtung 95:352−360 |
| [73] |
Flory. 1944. Inheritance studies of flower colour in periwinkle. Proceedings of American Society of Horticultural Science 44:525−526 |
| [74] |
Simmonds NW. 1960. Flower colour in Lochnera rosea. |
| [75] |
Xiao Y, Tang Y, Huang X, Zeng L, Liao Z. 2023. Integrated transcriptomics and metabolomics analysis reveal anthocyanin biosynthesis for petal color formation in Catharanthus roseus. |
| [76] |
Zhang Q, Zhang H, Sun L, Fan G, Ye M, et al. 2018. The genetic architecture of floral traits in the woody plant Prunus mume. |
| [77] |
Chen CM, Wei TY, Yeh DM. 2012. Morphology and inheritance of double floweredness in Catharanthus roseus. |
| [78] |
Liang Y, Zhao P, Liu B, Sun D, Ruan J, et al. 2024. Genetic mechanisms of petal morphogenesis in Eustoma grandiflorum. |
| [79] |
Huang TH, Lu YC, Chen YH, Shen RS. 2024. Morphology and inheritance of wavy flower form in periwinkle (Catharanthus roseus (L.) G. Don). |
| [80] |
Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli GB, et al. 2003. Toward the analysis of the Petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. |
| [81] |
Noor SH, Ushijima K, Murata A, Yoshida K, Tanabe M, et al. 2014. Double flower formation induced by silencing of C-class MADS-box genes and its variation among petunia cultivars. |
| [82] |
Chen HW, Lee PL, Wang CN, Hsu HJ, Chen JC. 2020. Silencing of PhLA, a CIN-TCP gene, causes defected petal conical epidermal cell formation and results in reflexed corolla lobes in petunia. |
| [83] |
Wang Y, Li J. 2006. Genes controlling plant architecture. |
| [84] |
Wang B, Smith SM, Li J. 2018. Genetic regulation of shoot architecture. |
| [85] |
Zhang X, Ding L, Song A, Li S, Liu J, et al. 2022. Dwarf and Robust Plant regulates plant height via modulating gibberellin biosynthesis in chrysanthemum. |
| [86] |
Fichtner F, Humphreys JL, Barbier FF, Feil R, Westhoff P, et al. 2024. Strigolactone signalling inhibits trehalose 6-phosphate signalling independently of BRC1 to suppress shoot branching. |
| [87] |
Olson HA, Benson DM. 2011. Characterization of Phytophthora spp. on floriculture crops in north Carolina. |
| [88] |
McGovern RJ, McSorley R, Urs RR. 2000. Reduction of Phytophthora blight of Madagascar periwinkle in Florida by soil solarization in autumn. |
| [89] |
Yandoc CB, Rosskopf EN, Shah DA, Albano JP. 2007. Effect of fertilization and biopesticides on the infection of Catharanthus roseus by Phytophthora nicotianae. |
| [90] |
Kulkarni RN, Baskaran K, Chandrashekara RS, Kumar S. 1999. Inheritance of morphological traits of periwinkle mutants with modified contents and yields of leaf and root alkaloids. |
| [91] |
Kulkarni RN, Baskaran K, Jhang T. 2016. Breeding medicinal plant, periwinkle [Catharanthus roseus (L) G. Don]: a review. |
| [92] |
Kumar S, Chaudhary S, Kumari R, Sharma V, Kumar A. 2012. Development of improved horticultural genotypes characterized by novel over-flowering inflorescence trait in periwinkle Catharanthus roseus. |
| [93] |
Din A, Wani MA, Jin C, Nazki IT, Ma J, et al. 2025. Post-genomic era of CRISPR/Cas technology in ornamental plants: advantages, limitations, and prospects. |
| [94] |
Cheng B, Du W, Bourke PM, Yu C. 2024. Population genetics of horticultural crops aided by multi-omics technology and its implications for ornamental plants. |
| [95] |
Grützner R, Martin P, Horn C, Mortensen S, Cram EJ, et al. 2021. High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns. |
| [96] |
Makki RM, Saeedi AA, Khan TK, Ali HM, Ramadan AM. 2019. Single nucleotide polymorphism analysis in plastomes of eight Catharanthus roseus cultivars. |
| [97] |
Das A, Sarkar S, Bhattacharyya S, Gantait S. 2020. Biotechnological advancements in Catharanthus roseus (L.) G. Don. |
| [98] |
Shariatipour N, Heidari B, Richards C. 2023. Meta-QTL for morphological traits and pharmaceutical alkaloids in periwinkle (Catharanthus roseus (L.) 'G. Don'). |
| [99] |
Burlat V, Papon N, Courdavault V. 2023. Medicinal plants enter the single-cell multi-omics era. |
| [100] |
Lacava PT, Azevedo JL. 2013. Biological control of insect-pest and diseases by endophytes. In Advances in Endophytic Research, eds. Verma VC, Gange AC. New Delhi: Springer. pp. 231−256 doi:10.1007/978-81-322-1575-2_13 |
| [101] |
Daughtrey ML, Wick RL, Peterson JL. 2000. Botrytis blight of flowering potted plants. |