[1]

Khare S, Singh NB, Singh A, Hussain I, Niharika K, et al. 2020. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. Journal of Plant Biology 63:203−216

doi: 10.1007/s12374-020-09245-7
[2]

Morrison KC, Hergenrother PJ. 2014. Natural products as starting points for the synthesis of complex and diverse compounds. Natural Product Reports 31:6−14

doi: 10.1039/C3NP70063A
[3]

Uuh-Narvaez JJ, Segura-Campos MR, Sytar O. 2023. Antioxidant potential and known secondary metabolites of rare or underutilized plants of Yucatan Region. Future Pharmacology 3:664−685

doi: 10.3390/futurepharmacol3040042
[4]

Sytar O. 2023. Prospect of underutilized (Minor) crops for climate-resilient agriculture. In Climate-Resilient Agriculture, Vol 1, ed. Hasanuzzaman M. Cham: Springer International Publishing. pp. 329−348 doi: 10.1007/978-3-031-37424-1_16

[5]

Chen Y, Zhan C, Li X, Pan T, Yao Y, et al. 2024. Five similar anthocyanidin molecules display distinct disruptive effects and mechanisms of action on Aβ1–42 protofibril: a molecular dynamic simulation study. International Journal of Biological Macromolecules 256:128467

doi: 10.1016/j.ijbiomac.2023.128467
[6]

Zong C, Xiao Y, Shao T, Amber Chiou J, Wu A, et al. 2023. Alfalfa as a vegetable source of β-carotene: the change mechanism of β-carotene during fermentation. Food Research International 172:113104

doi: 10.1016/j.foodres.2023.113104
[7]

Song D, Zhang S, Chen A, Song Z, Shi S. 2024. Comparison of the effects of chlorogenic acid isomers and their compounds on alleviating oxidative stress injury in broilers. Poultry Science 103:103649

doi: 10.1016/j.psj.2024.103649
[8]

Borges RS, Ortiz BLS, Pereira ACM, Keita H, Carvalho JCT. 2019. Rosmarinus officinalis essential oil: a review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. Journal of Ethnopharmacology 229:29−45

doi: 10.1016/j.jep.2018.09.038
[9]

Jain PLB, Patel SR, Desai MA. 2020. Enrichment of patchouli alcohol in patchouli oil by aiding sonication in hydrotropic extraction. Industrial Crops and Products 158:113011

doi: 10.1016/j.indcrop.2020.113011
[10]

Paul A, Acharya K, Chakraborty N. 2023. Biosynthesis, extraction, detection and pharmacological attributes of vinblastine and vincristine, two important chemotherapeutic alkaloids of Catharanthus roseus (L.) G. Don: a review. South African Journal of Botany 161:365−376

doi: 10.1016/j.sajb.2023.08.034
[11]

Zou R, Zhou Y, Lu Y, Zhao Y, Zhang N, et al. 2024. Preparation, pungency and bioactivity transduction of piperine from black pepper (Piper nigrum L.): a comprehensive review. Food Chemistry 456:139980

doi: 10.1016/j.foodchem.2024.139980
[12]

Qin Z, Tang R, Liang J, Jia X. 2024. Berberine, a natural alkaloid: Advances in its pharmacological effects and mechanisms in the treatment of autoimmune diseases. International Immunopharmacology 137:112422

doi: 10.1016/j.intimp.2024.112422
[13]

Reddy VS, Shiva S, Manikantan S, Ramakrishna S. 2024. Pharmacology of caffeine and its effects on the human body. European Journal of Medicinal Chemistry Reports 10:100138

doi: 10.1016/j.ejmcr.2024.100138
[14]

Feng J, Liu W, Feng D, Chitrakar B, Chen X, et al. 2024. Neuroprotective effects of trigonelline in eggplant on oxidative damage of PC12 cells and cognitive impairment in aging mice. Journal of Functional Foods 121:106441

doi: 10.1016/j.jff.2024.106441
[15]

Szkudelska K, Szkudelski T. 2022. The anti-diabetic potential of betaine. Mechanisms of action in rodent models of type 2 diabetes. Biomedicine & Pharmacotherapy 150:112946

doi: 10.1016/j.biopha.2022.112946
[16]

Pacifici GM. 2016. Metabolism and pharmacokinetics of morphine in neonates: a review. Clinics 71:474−480

doi: 10.6061/clinics/2016(08)11
[17]

Zhang M, Zhang H, Jia L, Zhang Y, Qin R, et al. 2024. Health benefits and mechanisms of theobromine. Journal of Functional Foods 115:106126

doi: 10.1016/j.jff.2024.106126
[18]

Mączka W, Twardawska M, Grabarczyk M, Wińska K. 2023. Carvacrol − a natural phenolic compound with antimicrobial properties. Antibiotics 12:824

doi: 10.3390/antibiotics12050824
[19]

Oliveira da Silva AL, Lempert LK, Glantz SA. 2024. More than a 'characterizing flavor': menthol at subliminal levels in tobacco products. Drug and Alcohol Dependence 261:111346

doi: 10.1016/j.drugalcdep.2024.111346
[20]

Zhou J, Kong L. 2023. Encapsulation and retention profile of thymol in the preformed 'empty' V-type starch inclusion complex. Food Frontiers 4:902−910

doi: 10.1002/fft2.222
[21]

Escobar A, Pérez M, Romanelli G, Blustein G. 2020. Thymol bioactivity: a review focusing on practical applications. Arabian Journal of Chemistry 13:9243−9269

doi: 10.1016/j.arabjc.2020.11.009
[22]

Al-Shudifat AE, Qnais E, Bseiso Y, Wedyan M, Gammoh O, et al. 2024. Antidepressant potential of β-caryophyllene in maternal separation-induced depression-like in mice: a focus on oxidative stress and nitrite levels. Phytomedicine Plus 4:100624

doi: 10.1016/j.phyplu.2024.100624
[23]

Chan WK, Tan L, Chan KG, Lee LH, Goh BH. 2016. Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 21:529

doi: 10.3390/molecules21050529
[24]

Zhang L, Wang G, Li Z, Yang J, Li H, et al. 2024. Molecular pharmacology and therapeutic advances of monoterpene perillyl alcohol. Phytomedicine 132:155826

doi: 10.1016/j.phymed.2024.155826
[25]

Tiwari M, Kakkar P. 2009. Plant derived antioxidants – geraniol and camphene protect rat alveolar macrophages against t-BHP induced oxidative stress. Toxicology in Vitro 23:295−301

doi: 10.1016/j.tiv.2008.12.014
[26]

Shehata AI, Shahin SA, Elmaghraby AM, Alhoshy M, Toutou MM, et al. 2024. Stevioside mitigates lead toxicity in thinlip mullet juveniles: impacts on growth, metabolism, and immune function. Aquatic Toxicology 271:106910

doi: 10.1016/j.aquatox.2024.106910
[27]

Wang WT, Xue YJ, Zhou JK, Zhang Z, Guo SY, et al. 2024. Exploring the antimicrobial activity of rare ginsenosides and the progress of their related pharmacological effects. Phytomedicine 133:155904

doi: 10.1016/j.phymed.2024.155904
[28]

Sahu BD, Kuncha M, Rachamalla SS, Sistla R. 2015. Lagerstroemia speciosa L. attenuates apoptosis in isoproterenol-induced cardiotoxic mice by inhibiting oxidative stress: possible role of Nrf2/HO-1. Cardiovascular Toxicology 15:10−22

doi: 10.1007/s12012-014-9263-1
[29]

Shi H, Nolan JM, Flynn R, Prado-Cabrero A. 2024. Beyond food colouring: lutein-food fortification to enhance health. Food Bioscience 59:104085

doi: 10.1016/j.fbio.2024.104085
[30]

Kim YI, Kim JS, Lee H, Jung CH, Ahn J. 2023. Whole red paprika (Capsicum annuum L.) and its orange-red pigment capsanthin ameliorate obesity-induced skeletal muscle atrophy in mice. Journal of Functional Foods 107:105624

doi: 10.1016/j.jff.2023.105624
[31]

Asaduzzaman M, Hasan N, Begum K, Ziaul Hoque SM. 2024. Degradation kinetics of lycopene from red amaranth & preparation of winter melon jelly using this lycopene and comparison with commercial jelly. Heliyon 10:e31135

doi: 10.1016/j.heliyon.2024.e31135
[32]

Bai J, Li J, Chen Z, Bai X, Yang Z, et al. 2023. Antibacterial activity and mechanism of clove essential oil against foodborne pathogens. LWT 173:114249

doi: 10.1016/j.lwt.2022.114249
[33]

Aslantürk ÖS, Aşkin Çelik T. 2023. Anticancer effect of umbelliferone on MKN-45 and MIA PaCa-2 cell lines. Toxicology in Vitro 93:105694

doi: 10.1016/j.tiv.2023.105694
[34]

Qian S, Lu M, Zhou X, Sun S, Han Z, et al. 2024. Improvement in caffeic acid and ferulic acid extraction by oscillation-assisted mild hydrothermal pretreatment from sorghum straws. Bioresource Technology 396:130442

doi: 10.1016/j.biortech.2024.130442
[35]

Venkataraman S, Athilakshmi JK, Rajendran DS, Bharathi P, Kumar VV. 2024. A comprehensive review of eclectic approaches to the biological synthesis of vanillin and their application towards the food sector. Food Science and Biotechnology 33:1019−1036

doi: 10.1007/s10068-023-01484-x
[36]

Trivedi S, Patel K, Belgamwar V, Wadher K. 2022. Functional polysaccharide lentinan: role in anti-cancer therapies and management of carcinomas. Pharmacological Research − Modern Chinese Medicine 2:100045

doi: 10.1016/j.prmcm.2022.100045
[37]

Wu DT, Guo H, Lin S, Lam SC, Zhao L, et al. 2018. Review of the structural characterization, quality evaluation, and industrial application of Lycium barbarum polysaccharides. Trends in Food Science & Technology 79:171−183

doi: 10.1016/j.jpgs.2018.07.016
[38]

Kou F, Ge Y, Wang W, Mei Y, Cao L, et al. 2023. A review of Ganoderma lucidum polysaccharides: health benefit, structure – activity relationship, modification, and nanoparticle encapsulation. International Journal of Biological Macromolecules 243:125199

doi: 10.1016/j.ijbiomac.2023.125199
[39]

Zeng S, Wang K, Liu X, Hu Z, Zhao L. 2024. Potential of longan (Dimocarpus longan Lour.) in functional food: a review of molecular mechanism-directing health benefit properties. Food Chemistry 437:137812

doi: 10.1016/j.foodchem.2023.137812
[40]

Li F, Zhao J, Wei Y, Jiao X, Li Q. 2021. Holistic review of polysaccharides isolated from pumpkin: preparation methods, structures and bioactivities. International Journal of Biological Macromolecules 193:541−552

doi: 10.1016/j.ijbiomac.2021.10.037
[41]

Fan Y, Zhou X, Huang G. 2022. Preparation, structure, and properties of tea polysaccharide. Chemical Biology & Drug Design 99:75−82

doi: 10.1111/cbdd.13924
[42]

Chen JH, Lin IH, Hsueh TY, Dalley JW, Tsai TH. 2022. Pharmacokinetics and transplacental transfer of codeine and codeine metabolites from Papaver somniferum L. Journal of Ethnopharmacology 298:115623

doi: 10.1016/j.jep.2022.115623
[43]

Bailly C. 2021. The steroidal alkaloids α-tomatine and tomatidine: panorama of their mode of action and pharmacological properties. Steroids 176:108933

doi: 10.1016/j.steroids.2021.108933
[44]

Hu H, Qian J, Chu J, Wang Y, Zhuang Y, et al. 2009. DNA shuffling of methionine adenosyltransferase gene leads to improved S-adenosyl-l-methionine production in Pichia pastoris. Journal of Biotechnology 141:97−103

doi: 10.1016/j.jbiotec.2009.03.006
[45]

Ravi Kant H, Balamurali M, Meenakshisundaram S. 2014. Enhancing precursors availability in Pichia pastoris for the overproduction of S-adenosyl-l-methionine employing molecular strategies with process tuning. Journal of Biotechnology 188:112−121

doi: 10.1016/j.jbiotec.2014.08.017
[46]

McKeague M, Wang YH, Cravens A, Win MN, Smolke CD. 2016. Engineering a microbial platform for de novo biosynthesis of diverse methylxanthines. Metabolic Engineering 38:191−203

doi: 10.1016/j.ymben.2016.08.003
[47]

Li M, Sun Y, Pan SA, Deng WW, Yu O, et al. 2017. Engineering a novel biosynthetic pathway in Escherichia coli for the production of caffeine. RSC Advances 7:56382−56389

doi: 10.1039/C7RA10986E
[48]

Uefuji H, Tatsumi Y, Morimoto M, Kaothien-Nakayama P, Ogita S, et al. 2005. Caffeine production in tobacco plants by simultaneous expression of three coffee N-methyltrasferases and its potential as a pest repellant. Plant Molecular Biology 59:221−227

doi: 10.1007/s11103-005-8520-x
[49]

Choi DW, Jung SY, Shon DH, Shin HS. 2020. Piperine ameliorates trimellitic anhydride-induced atopic dermatitis-like symptoms by suppressing Th2-mediated immune responses via inhibition of STAT6 phosphorylation. Molecules 25:2186

doi: 10.3390/molecules25092186
[50]

Lu S, Zhou C, Guo X, Du Z, Cheng Y, et al. 2022. Enhancing fluxes through the mevalonate pathway in Saccharomyces cerevisiae by engineering the HMGR and β‐alanine metabolism. Microbial Biotechnology 15:2292−2306

doi: 10.1111/1751-7915.14072
[51]

Ye M, Gao J, Zhou YJ. 2023. Global metabolic rewiring of the nonconventional yeast Ogataea polymorpha for biosynthesis of the sesquiterpenoid β-elemene. Metabolic Engineering 76:225−231

doi: 10.1016/j.ymben.2023.02.008
[52]

Banerjee A, Preiser AL, Sharkey TD. 2016. Engineering of recombinant poplar deoxy-D-xylulose-5-phosphate synthase (PtDXS) by site-directed mutagenesis improves its activity. PLoS One 11:e0161534

doi: 10.1371/journal.pone.0161534
[53]

Zhao Y, Yang J, Qin B, Li Y, Sun Y, et al. 2011. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Applied Microbiology and Biotechnology 90:1915−1922

doi: 10.1007/s00253-011-3199-1
[54]

Kudoh K, Kawano Y, Hotta S, Sekine M, Watanabe T, et al. 2014. Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-d-xylulose 5-phosphate synthase and carbon allocation analysis. Journal of Bioscience and Bioengineering 118:20−28

doi: 10.1016/j.jbiosc.2013.12.018
[55]

Yuan LZ, Rouvière PE, LaRossa RA, Suh W. 2006. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metabolic Engineering 8:79−90

doi: 10.1016/j.ymben.2005.08.005
[56]

Chen H, Li M, Liu C, Zhang H, Xian M, et al. 2018. Enhancement of the catalytic activity of Isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microbial Cell Factories 17:65

doi: 10.1186/s12934-018-0913-z
[57]

Xie W, Lv X, Ye L, Zhou P, Yu H. 2015. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metabolic Engineering 30:69−78

doi: 10.1016/j.ymben.2015.04.009
[58]

Chen Y, Xiao W, Wang Y, Liu H, Li X, et al. 2016. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microbial Cell Factories 15(1):113

doi: 10.1186/s12934-016-0509-4
[59]

Mastromatteo M, Lucera A, Sinigaglia M, Corbo MR. 2009. Combined effects of thymol, carvacrol and temperature on the quality of non conventional poultry patties. Meat Science 83:246−254

doi: 10.1016/j.meatsci.2009.05.007
[60]

Shemesh R, Krepker M, Nitzan N, Vaxman A, Segal E. 2016. Active packaging containing encapsulated carvacrol for control of postharvest decay. Postharvest Biology and Technology 118:175−182

doi: 10.1016/j.postharvbio.2016.04.009
[61]

Iqubal A, Ali Syed M, Najmi AK, Azam F, Barreto GE, et al. 2020. Nano-engineered nerolidol loaded lipid carrier delivery system attenuates cyclophosphamide neurotoxicity – probable role of NLRP3 inflammasome and caspase-1. Experimental Neurology 334:113464

doi: 10.1016/j.expneurol.2020.113464
[62]

Moore BS. 2018. Natural product reports 35 years on. Natural Product Reports 35:6−7

doi: 10.1039/C8NP90001A
[63]

Koushki M, Amiri Dashatan N, Ahmadi N, Abbaszadeh HA, Rezaei Tavirani M. 2018. Resveratrol: a miraculous natural compound for diseases treatment. Food Science & Nutrition 6:2473−2490

doi: 10.1002/fsn3.855
[64]

Wei B, Li H, Han T, Luo Q, Yang M, et al. 2024. Effects of dietary salidroside on intestinal health, immune parameters and intestinal microbiota in largemouth bass (Micropterus salmoides). Fish & Shellfish Immunology 151:109750

doi: 10.1016/j.fsi.2024.109750
[65]

Yu Y, Wang Y, Yu Y, Ma P, Jia Z, et al. 2021. Overexpression of IbPAL1 promotes chlorogenic acid biosynthesis in sweetpotato. The Crop Journal 9:204−215

doi: 10.1016/j.cj.2020.06.003
[66]

Karlson CKS, Mohd Noor SN, Khalid N, Tan BC. 2022. CRISPRi-mediated down-regulation of the cinnamate-4-hydroxylase (C4H) gene enhances the flavonoid biosynthesis in Nicotiana tabacum. Biology 11:1127

doi: 10.3390/biology11081127
[67]

Wei XX, Wang XQ. 2004. Evolution of 4-coumarate: coenzyme A ligase (4CL) gene and divergence of Larix (Pinaceae). Molecular Phylogenetics and Evolution 31:542−553

doi: 10.1016/j.ympev.2003.08.015
[68]

Meng L, Zhou R, Liang L, Zang X, Lin J, et al. 2024. 4-coumarate-CoA ligase (4-CL) enhances flavonoid accumulation, lignin synthesis, and fruiting body formation in Ganoderma lucidum. Gene 899:148147

doi: 10.1016/j.gene.2024.148147
[69]

Xiong D, Lu S, Wu J, Liang C, Wang W, et al. 2017. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor. Metabolic Engineering 40:115−123

doi: 10.1016/j.ymben.2017.01.006
[70]

Su Z, Jia H, Sun M, Cai Z, Shen Z, et al. 2022. Integrative analysis of the metabolome and transcriptome reveals the molecular mechanism of chlorogenic acid synthesis in peach fruit. Frontiers in Nutrition 9:961626

doi: 10.3389/fnut.2022.961626
[71]

Moglia A, Acquadro A, Eljounaidi K, Milani AM, Cagliero C, et al. 2016. Genome-wide identification of BAHD acyltransferases and in vivo characterization of HQT-like enzymes involved in caffeoylquinic acid synthesis in globe artichoke. Frontiers in Plant Science 7:1424

doi: 10.3389/fpls.2016.01424
[72]

Liu Q, Zhou W, Ruan Q, Cheng H, Liu T, et al. 2020. Overexpression of TaWRKY14 transcription factor enhances accumulation of chlorogenic acid in Taraxacum antungense Kitag and increases its resistance to powdery mildew. Plant Cell, Tissue and Organ Culture (PCTOC) 143:665−679

doi: 10.1007/s11240-020-01950-y
[73]

Zha L, Liu S, Liu J, Jiang C, Yu S, et al. 2017. DNA methylation influences chlorogenic acid biosynthesis in Lonicera japonica by mediating LjbZIP8 to regulate phenylalanine ammonia-lyase 2 expression. Frontiers in Plant Science 8:1178

doi: 10.3389/fpls.2017.01178
[74]

Kopjar M, Jakšić K, Piližota V. 2012. Influence of sugars and chlorogenic acid addition on anthocyanin content, antioxidant activity and color of blackberry juice during storage. Journal of Food Processing and Preservation 36:545−552

doi: 10.1111/j.1745-4549.2011.00631.x
[75]

Wang W, Wang Y, Wang F, Xie G, Liu S, et al. 2024. Gastrodin regulates the TLR4/TRAF6/NF-κB pathway to reduce neuroinflammation and microglial activation in an AD model. Phytomedicine 128:155518

doi: 10.1016/j.phymed.2024.155518
[76]

Ahmadi Gavlighi H, Tabarsa M, You S, Surayot U, Ghaderi-Ghahfarokhi M. 2018. Extraction, characterization and immunomodulatory property of pectic polysaccharide from pomegranate peels: enzymatic vs conventional approach. International Journal of Biological Macromolecules 116:698−706

doi: 10.1016/j.ijbiomac.2018.05.083
[77]

Seger M, Gebril S, Tabilona J, Peel A, Sengupta-Gopalan C. 2015. Impact of concurrent overexpression of cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in transgenic tobacco. Planta 241:69−81

doi: 10.1007/s00425-014-2165-4
[78]

Du W, Liang F, Duan Y, Tan X, Lu X. 2013. Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metabolic Engineering 19:17−25

doi: 10.1016/j.ymben.2013.05.001
[79]

Peng L, Qiao S, Xu Z, Guan F, Ding Z, et al. 2015. Effects of culture conditions on monosaccharide composition of Ganoderma lucidum exopolysaccharide and on activities of related enzymes. Carbohydrate Polymers 133:104−109

doi: 10.1016/j.carbpol.2015.07.014
[80]

Adil B, Xiang Q, He M, Wu Y, Asghar MA, et al. 2020. Effect of sodium and calcium on polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Lentinus edodes. AMB Express 10(1):47

doi: 10.1186/s13568-020-00985-w
[81]

Chen H, Zhao L, You C, Liu J, Chen L, et al. 2024. Roles of α-1, 3-glucosyltransferase in growth and polysaccharides biosynthesis of Ganoderma lucidum. International Journal of Biological Macromolecules 276:134031

doi: 10.1016/j.ijbiomac.2024.134031
[82]

Athmouni K, Belhaj D, El Feki A, Ayadi H. 2018. Optimization, antioxidant properties and GC–MS analysis of Periploca angustifolia polysaccharides and chelation therapy on cadmium-induced toxicity in human HepG2 cells line and rat liver. International Journal of Biological Macromolecules 108:853−862

doi: 10.1016/j.ijbiomac.2017.10.175
[83]

You Q, Yin X, Ji C. 2014. Pulsed counter-current ultrasound-assisted extraction and characterization of polysaccharides from Boletus edulis. Carbohydrate Polymers 101:379−385

doi: 10.1016/j.carbpol.2013.09.031
[84]

Pu Y, Liu Z, Tian H, Bao Y. 2019. The immunomodulatory effect of Poria cocos polysaccharides is mediated by the Ca2+/PKC/p38/NF-κB signaling pathway in macrophages. International Immunopharmacology 72:252−257

doi: 10.1016/j.intimp.2019.04.017
[85]

Thodey K, Galanie S, Smolke CD. 2014. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nature Chemical Biology 10:837−844

doi: 10.1038/nchembio.1613
[86]

Arendt P, Miettinen K, Pollier J, De Rycke R, Callewaert N, et al. 2017. An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metabolic Engineering 40:165−175

doi: 10.1016/j.ymben.2017.02.007
[87]

Purohit A, Pawar L, Yadav SK. 2024. Fermenter scale production of recombinant beta-mannanase by E. coli BL21 cells under microaerobic environment. Carbohydrate Research 541:109150

doi: 10.1016/j.carres.2024.109150
[88]

Bergmann P, Takenberg M, Frank C, Zschätzsch M, Werner A, et al. 2022. Cultivation of Inonotus hispidus in stirred tank and wave bag bioreactors to produce the natural colorant hispidin. Fermentation 8(10):541

doi: 10.3390/fermentation8100541
[89]

Xia Y, Yang C, Liu X, Wang G, Xiong Z, et al. 2022. Enhancement of triterpene production via in situ extractive fermentation of Sanghuangporus vaninii YC-1. Biotechnology and Applied Biochemistry 69:2561−2572

doi: 10.1002/bab.2305
[90]

Denby CM, Li RA, Vu VT, Costello Z, Lin W, et al. 2018. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nature Communications 9:965

doi: 10.1038/s41467-018-03293-x
[91]

Wang ZY, Wang JJ, Liu XF, He XP, Zhang BR. 2009. Recombinant industrial brewing yeast strains with ADH2 interruption using self-cloning GSH1 + CUP1 cassette. FEMS Yeast Research 9:574−581

doi: 10.1111/j.1567-1364.2009.00502.x