[1]

González-Castejón M, Visioli F, Rodriguez-Casado A. 2012. Diverse biological activities of dandelion. Nutrition Reviews 70:534−547

doi: 10.1111/j.1753-4887.2012.00509.x
[2]

Ivanov I, Petkova N, Tumbarski J, Dincheva I, Badjakov I, et al. 2018. GC-MS characterization of n-hexane soluble fraction from dandelion (Taraxacum officinale Weber ex F. H. Wigg. ) aerial parts and its antioxidant and antimicrobial properties. Zeitschrift für Naturforschung C 73:41−47

doi: 10.1515/znc-2017-0107
[3]

Davaatseren M, Hur HJ, Yang HJ, Hwang JT, Park JH, et al. 2013. Taraxacum official (dandelion) leaf extract alleviates high-fat diet-induced nonalcoholic fatty liver. Food and Chemical Toxicology 58:30−36

doi: 10.1016/j.fct.2013.04.023
[4]

Guo H, Zhang W, Jiang Y, Wang H, Chen G, et al. 2019. Physicochemical, structural, and biological properties of polysaccharides from dandelion. Molecules 24:1485

doi: 10.3390/molecules24081485
[5]

Lis B, Rolnik A, Jedrejek D, Soluch A, Stochmal A, et al. 2019. Dandelion (Taraxacum officinale L.) root components exhibit anti-oxidative and antiplatelet action in an in vitro study. Journal of Functional Foods 59:16−24

doi: 10.1016/j.jff.2019.05.019
[6]

Tanasa Acretei MV, Negreanu-Pirjol T, Olariu L, Negreanu-Pirjol BS, Lepadatu AC, et al. 2025. Bioactive compounds from vegetal organs of Taraxacum species (dandelion) with biomedical applications: a review. International Journal of Molecular Sciences 26:450

doi: 10.3390/ijms26020450
[7]

Xue Y, Zhang S, Du M, Zhu MJ. 2017. Dandelion extract suppresses reactive oxidative species and inflammasome in intestinal epithelial cells. Journal of Functional Foods 29:10−18

doi: 10.1016/j.jff.2016.11.032
[8]

Zhou S, Wang Z, Hao Y, An P, Luo J, et al. 2023. Dandelion polysaccharides ameliorate high-fat-diet-induced atherosclerosis in mice through antioxidant and anti-inflammatory capabilities. Nutrients 15:4120

doi: 10.3390/nu15194120
[9]

Wu Z, Zhang T, Ma X, Guo S, Zhou Q, et al. 2023. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 31:2901−2937

doi: 10.1007/s10787-023-01369-9
[10]

Gautam R, Jachak SM. 2009. Recent developments in anti-inflammatory natural products. Medicinal Research Reviews 29:767−820

doi: 10.1002/med.20156
[11]

Ambriz-Pérez DL, Leyva-López N, Gutierrez-Grijalva EP, Heredia JB. 2016. Phenolic compounds: natural alternative in inflammation treatment. A review. Cogent Food & Agriculture 2:1131412

doi: 10.1080/23311932.2015.1131412
[12]

Kim HP, Son KH, Chang HW, Kang SS. 2004. Anti-inflammatory plant flavonoids and cellular action mechanisms. Journal of Pharmacological Sciences 96:229−245

doi: 10.1254/jphs.CRJ04003X
[13]

Serafini M, Peluso I, Raguzzini A. 2010. Flavonoids as anti-inflammatory agents. Proceedings of the Nutrition Socirty 69:273−278

doi: 10.1017/S002966511000162X
[14]

Zhang X, Xiong H, Li H, Cheng Y. 2014. Protective effect of taraxasterol against LPS-induced endotoxic shock by modulating inflammatory responses in mice. Immunopharmacology and Immunotoxicology 36:11−16

doi: 10.3109/08923973.2013.861482
[15]

Huwait EA, Saddeek SY, Al-Massabi RF, Almowallad SJ, Pushparaj PN, et al. 2021. Antiatherogenic effects of quercetin in the THP-1 macrophage model in vitro, with insights into its signaling mechanisms using in silico analysis. Frontiers in Pharmacology 12:698138

doi: 10.3389/fphar.2021.698138
[16]

Yoo H, Ku SK, Baek YD, Bae JS. 2014. Anti-inflammatory effects of rutin on HMGB1-induced inflammatory responses in vitro and in vivo. Inflammation Research 63:197−206

doi: 10.1007/s00011-013-0689-x
[17]

Wan Y, Xu L, Liu Z, Yang M, Jiang X, et al. 2019. Utilising network pharmacology to explore the underlying mechanism of Wumei Pill in treating pancreatic neoplasms. BMC Complementary and Alternative Medicine 19:158

doi: 10.1186/s12906-019-2580-y
[18]

Sun Y, Yang J. 2019. A bioinformatics investigation into the pharmacological mechanisms of the effect of Fufang Danshen on pain based on methodologies of network pharmacology. Scientific Reports 1:5913

doi: 10.1038/s41598-019-40694-4
[19]

Xiong Y, Yang Y, Xiong W, Yao Y, Wu H, et al. 2019. Network pharmacology-based research on the active component and mechanism of the antihepatoma effect of Rubia cordifolia L. Journal of Cellular Biochemistry 120:12461−12472

doi: 10.1002/jcb.28513
[20]

Li W, Yuan G, Pan Y, Wang C, Chen H. 2017. Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: a review. Frontiers in Pharmacology 8:74

doi: 10.3389/fphar.2017.00074
[21]

Kibble M, Saarinen N, Tang J, Wennerberg K, Mäkelä S, et al. 2015. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Natural Product Reports 32:1249−1266

doi: 10.1039/C5NP00005J
[22]

Fang S, Dong L, Liu L, Guo J, Zhao L, et al. 2021. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Research 49:D1197−D1206

doi: 10.1093/nar/gkaa1063
[23]

Ru J, Li P, Wang J, Zhou W, Li B, et al. 2014. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics 6:13

doi: 10.1186/1758-2946-6-13
[24]

Sherman BT, Huang DW, Tan Q, Guo Y, Bour S, et al. 2007. DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinformatics 8:426

doi: 10.1186/1471-2105-8-426
[25]

Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. 2025. KEGG: biological systems database as a model of the real world. Nucleic Acids Research 53:D672−D677

doi: 10.1093/nar/gkae909
[26]

Chanput W, Mes JJ, Wichers HJ. 2014. THP-1 cell line: an in vitro cell model for immune modulation approach. International Immunopharmacology 23:37−45

doi: 10.1016/j.intimp.2014.08.002
[27]

Kong F, Ye B, Lin L, Cai X, Huang W, et al. 2016. Atorvastatin suppresses NLRP3 inflammasome activation via TLR4/MyD88/NF-κB signaling in PMA-stimulated THP-1 monocytes. Biomedicine & Pharmacotherapy 82:167−172

doi: 10.1016/j.biopha.2016.04.043
[28]

Ayele Y, Kim JA, Park E, Kim YJ, Retta N, et al. 2013. A methanol extract of Adansonia digitata L. leaves inhibits pro-inflammatory iNOS possibly via the inhibition of NF-κB activation. Biomolecules & Therapeutics 21:146−152

doi: 10.4062/biomolther.2012.098
[29]

Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S. 2012. Metformin inhibits advanced glycation end products (AGEs)-induced renal tubular cell injury by suppressing reactive oxygen species generation via reducing receptor for AGEs (RAGE) expression. Hormone and Metabolic Research 44:891−895

doi: 10.1055/s-0032-1321878
[30]

Ge X, Gu Y, Wang W, Guo W, Wang P, et al. 2024. Corynoline alleviates hepatic ischemia–reperfusion injury by inhibiting NLRP3 inflammasome activation through enhancing Nrf2/HO-1 signaling. Inflammation Research 73:2069−2085

doi: 10.1007/s00011-024-01949-7
[31]

Xiang R, Xiao X, Liu J, Guo Z, He H, et al. 2024. Protective effects of functional Nano-Selenium supplementation on spleen injury through regulation of p38 MAPK and NF-κB protein expression. International Immunopharmacology 130:111574

doi: 10.1016/j.intimp.2024.111574
[32]

Kleemann R, Verschuren L, Morrison M, Zadelaar S, van Erk MJ, et al. 2011. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 218:44−52

doi: 10.1016/j.atherosclerosis.2011.04.023
[33]

Lee ES, Park SH, Kim MS, Han SY, Kim HS, et al. 2012. Caffeic acid disturbs monocyte adhesion onto cultured endothelial cells stimulated by adipokine resistin. Journal of Agricultural and Food Chemistry 60:2730−2739

doi: 10.1021/jf203774y
[34]

Prasad K, Mishra M. 2018. AGE−RAGE stress, stressors, and antistressors in health and disease. International Journal of Angiology 27:1−12

doi: 10.1055/s-0037-1613678
[35]

González I, Morales MA, Rojas A. 2020. Polyphenols and AGEs/RAGE axis trends and challenges. Food Research International 129:108843

doi: 10.1016/j.foodres.2019.108843
[36]

Schmidt AM, Yan SD, Wautier JL, Stern D. 1999. Activation of receptor for advanced glycation end products. Circulation Research 84:489−497

doi: 10.1161/01.RES.84.5.489
[37]

Simm A, Caßelmann C, Schubert A, Hofmann S, Reimann A, et al. 2004. Age associated changes of AGE-receptor expression: RAGE upregulation is associated with human heart dysfunction. Experimental Gerontology 39:407−413

doi: 10.1016/j.exger.2003.12.006
[38]

Alves M, Calegari VC, Cunha DA, Saad MJA, Velloso LA, et al. 2005. Increased expression of advanced glycation end-products and their receptor, and activation of nuclear factor kappa-B in lacrimal glands of diabetic rats. Diabetologia 48:2675−2681

doi: 10.1007/s00125-005-0010-9
[39]

Jang DI, Lee AH, Shin HY, Song HR, Park JH, et al. 2021. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. International Journal of Molecular Sciences 22:2719

doi: 10.3390/ijms22052719
[40]

Matarazzo L, Hernandez Santana YE, Walsh PT, Fallon PG. 2022. The IL-1 cytokine family as custodians of barrier immunity. Cytokine 154:155890

doi: 10.1016/j.cyto.2022.155890
[41]

Bode JG, Ehlting C, Häussinger D. 2012. The macrophage response towards LPS and its control through the p38MAPK–STAT3 axis. Cellular Signalling 24:1185−1194

doi: 10.1016/j.cellsig.2012.01.018
[42]

Chen T, Zhang X, Zhu G, Liu H, Chen J, et al. 2020. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine 99:e22241

doi: 10.1097/MD.0000000000022241
[43]

Huang X, Xi Y, Pan Q, Mao Z, Zhang R, et al. 2018. Caffeic acid protects against IL-1β-induced inflammatory responses and cartilage degradation in articular chondrocytes. Biomedicine & Pharmacotherapy 107:433−439

doi: 10.1016/j.biopha.2018.07.161
[44]

Jang EA, Han HJ, Tin TD, Cho E, Lee S, et al. 2023. The effect of caffeic acid phenethyl ester (CAPE) on phagocytic activity of septic neutrophil in vitro. Biomedical Science Letters 29:211−219

doi: 10.15616/BSL.2023.29.4.211
[45]

Awwad O, Coperchini F, Pignatti P, Denegri M, Massara S, et al. 2018. The AMPK-activator AICAR in thyroid cancer: effects on CXCL8 secretion and on CXCL8-induced neoplastic cell migration. Journal of Endocrinological Investigation 41:1275−1282

doi: 10.1007/s40618-018-0862-8
[46]

Maity S, Kinra M, Nampoothiri M, Arora D, Pai KSR, et al. 2022. Caffeic acid, a dietary polyphenol, as a promising candidate for combination therapy. Chemical Papers 76:1271−1283

doi: 10.1007/s11696-021-01947-7
[47]

Nakanishi K, Yanase E, Jang YP. 2010. Syntheses of antioxidant flavonoid derivatives. Heterocycles 82:1151−1155

doi: 10.3987/com-10-s(e)102