[1]

Wang X, Wen H, Suprun A, Zhu H. 2025. Ethylene signaling in regulating plant growth, development, and stress responses. Plants 14:309

doi: 10.3390/plants14030309
[2]

Huang W, Tan C, Guo H. 2024. Ethylene in fruits: beyond ripening control. Horticulture Research 11:uhae229

doi: 10.1093/hr/uhae229
[3]

Binder BM. 2020. Ethylene signaling in plants. Journal of Biological Chemistry 295:7710−7725

doi: 10.1074/jbc.REV120.010854
[4]

Tipu MMH, Sherif SM. 2024. Ethylene and its crosstalk with hormonal pathways in fruit ripening: mechanisms, modulation, and commercial exploitation. Frontiers in Plant Science 15:1475496

doi: 10.3389/fpls.2024.1475496
[5]

Li D, Zeng S, Dai R, Chen K. 2025. Slow and steady wins the race: the negative regulators of ethylene biosynthesis in horticultural plants. Horticulture Research 12:uhaf108

doi: 10.1093/hr/uhaf108
[6]

Nguyen TMV, Tran DT, Mata CI, Van de Poel B, Nicolaï BM, et al. 2025. Gene expression driving ethylene biosynthesis and signaling pathways in ripening tomato fruit: a kinetic modelling approach. Journal of Experimental Botany 76:6453−6471

doi: 10.1093/jxb/eraf055
[7]

Yang C, Ying S, Tang B, Yu C, Wang Y, et al. 2025. The mechanistic insights into fruit ripening: integrating phytohormones, transcription factors, and epigenetic modification. Journal of Genetics and Genomics 52:1475−1489

doi: 10.1016/j.jgg.2025.06.001
[8]

Gao F, Dubos C. 2024. The arabidopsis bHLH transcription factor family. Trends in Plant Science 29:668−680

doi: 10.1016/j.tplants.2023.11.022
[9]

Xiong H, He H, Chang Y, Miao B, Liu Z, et al. 2025. Multiple roles of NAC transcription factors in plant development and stress responses. Journal of Integrative Plant Biology 67:510−538

doi: 10.1111/jipb.13854
[10]

Baumgart LA, Greenblum SI, Morales-Cruz A, Wang P, Zhang Y, et al. 2025. Recruitment, rewiring and deep conservation in flowering plant gene regulation. Nature Plants 11:1514−1527

doi: 10.1038/s41477-025-02047-0
[11]

Li S, Chen K, Grierson D. 2021. Molecular and hormonal mechanisms regulating fleshy fruit ripening. Cells 10:1136

doi: 10.3390/cells10051136
[12]

Manning K, Tör M, Poole M, Hong Y, Thompson AJ, et al. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-Box transcription factor inhibits tomato fruit ripening. Nature Genetics 38:948−952

doi: 10.1038/ng1841
[13]

Barry CS, Giovannoni JJ. 2007. Ethylene and fruit ripening. Journal of Plant Growth Regulation 26:143−159

doi: 10.1007/s00344-007-9002-y
[14]

Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ. 2011. The tomato MADS-Box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol 157:1568−1579

doi: 10.1104/pp.111.181107
[15]

Liu GS, Li HL, Grierson D, Fu DQ. 2022. NAC transcription factor family regulation of fruit ripening and quality: a review. Cells 11:525

doi: 10.3390/cells11030525
[16]

Liu M, Zeng J, Li T, Li Y, Jiang Y, et al. 2024. Transcription factor NOR and CNR synergistically regulate tomato fruit ripening and carotenoid biosynthesis. Molecular Horticulture 4:27

doi: 10.1186/s43897-024-00103-5
[17]

Zou SC, Zhuo MG, Abbas F, Hu GB, Wang HC, et al. 2023. Transcription factor LcNAC002 coregulates chlorophyll degradation and anthocyanin biosynthesis in litchi. Plant Physiology 192:1913−1927

doi: 10.1093/plphys/kiad118
[18]

Wang J, Yu Y, Guo S, Zhang J, Ren Y, et al. 2024. A natural variant of NON-RIPENING promotes fruit ripening in watermelon. The Plant Cell 37:koae313

doi: 10.1093/plcell/koae313
[19]

Alves M, Dadalto S, Gonçalves A, De Souza G, Barros V, et al. 2014. Transcription factor functional protein-protein interactions in plant defense responses. Proteomes 2:85−106

doi: 10.3390/proteomes2010085
[20]

Correa Marrero M, Capdevielle S, Huang W, Al‐Subhi AM, Busscher M, et al. 2024. Protein interaction mapping reveals widespread targeting of development‐related host transcription factors by phytoplasma effectors. The Plant Journal 117:1281−1297

doi: 10.1111/tpj.16546
[21]

Li Q, Chen Y, Wei Y, Jiang S, Ye J, et al. 2025. PpMYC2 and PpJAM2/3 antagonistically regulate lignin synthesis to cope with the disease in peach fruit. Plant Biotechnology Journal 23:3524−3539

doi: 10.1111/pbi.70177
[22]

Zou Q, Bao T, Yu L, Xu H, Liu W, et al. 2025. The regulatory module MdCPCL-MdILR3L mediates the synthesis of ascorbic acid and anthocyanin in apple. Plant Biotechnology Journal 23:1101−1117

doi: 10.1111/pbi.14567
[23]

Jia D, Li Y, Jia K, Huang B, Dang Q, et al. 2024. Abscisic acid activates transcription factor module MdABI5–MdMYBS1 during carotenoid-derived apple fruit coloration. Plant Physiology 195:2053−2072

doi: 10.1093/plphys/kiae188
[24]

Zhang L, Tao H, Zhang J, An Y, Wang L. 2025. 5-Aminolevulinic acid activates the MdWRKY71-MdMADS1 module to enhance anthocyanin biosynthesis in apple. Molecular Horticulture 5:10

doi: 10.1186/s43897-024-00127-x
[25]

Scott GJ. 2021. A review of root, tuber and banana crops in developing countries: past, present and future. International Journal of Food Science & Technology 56:1093−1114

doi: 10.1111/ijfs.14778
[26]

Al-Dairi M, Pathare PB, Al-Yahyai R, Jayasuriya H, Al-Attabi Z. 2023. Postharvest quality, technologies, and strategies to reduce losses along the supply chain of banana: a review. Trends in Food Science & Technology 134:177−191

doi: 10.1016/j.jpgs.2023.03.003
[27]

Wei W, Yang YY, Lakshmanan P, Kuang JF, Lu WJ, et al. 2023. Proteasomal degradation of MaMYB60 mediated by the E3 ligase MaBAH1 causes high temperature-induced repression of chlorophyll catabolism and green ripening in banana. The Plant Cell 35:1408−1428

doi: 10.1093/plcell/koad030
[28]

Wei W, Yang YY, Wu CJ, Kuang JF, Chen JY, et al. 2023. MaSPL16 positively regulates fruit ripening in bananas via the direct transcriptional induction of MaNAC029. Horticulture Advances 1:10

doi: 10.1007/s44281-023-00013-4
[29]

Wei W, Yang YY, Chen JY, Lakshmanan P, Kuang JF, et al. 2023. MaNAC029 modulates ethylene biosynthesis and fruit quality and undergoes MaXB3-mediated proteasomal degradation during banana ripening. Journal of Advanced Research 53:33−47

doi: 10.1016/j.jare.2022.12.004
[30]

Wei W, Yang YY, Wu CJ, Kuang JF, Lu WJ, et al. 2023. MaNAC19–MaXB3 regulatory module mediates sucrose synthesis in banana fruit during ripening. International Journal of Biological Macromolecules 253:127144

doi: 10.1016/j.ijbiomac.2023.127144
[31]

Sainsbury F, Thuenemann EC, Lomonossoff GP. 2009. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnology Journal 7:682−693

doi: 10.1111/j.1467-7652.2009.00434.x
[32]

Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, et al. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13

doi: 10.1186/1746-4811-1-13
[33]

Cordenunsi BR, Lajolo FM. 1995. Starch breakdown during banana ripening: sucrose synthase and sucrose phosphate synthase. Journal of Agricultural and Food Chemistry 43:347−351

doi: 10.1021/jf00050a016
[34]

Rayo-Mendez LM, Gómez AV, Tadini CC. 2019. Extraction of soluble sugars from banana puree to obtain a matrix rich in non-starch polysaccharides. Food Chemistry 294:539−546

doi: 10.1016/j.foodchem.2019.05.079
[35]

Hubbard NL, Pharr DM, Huber SC. 1990. Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric. Plant Physiology 94:201−208

doi: 10.1104/pp.94.1.201
[36]

Liu J, Qiao Y, Li C, Hou B. 2023. The NAC transcription factors play core roles in flowering and ripening fundamental to fruit yield and quality. Frontiers in Plant Science 14:1095967

doi: 10.3389/fpls.2023.1095967
[37]

Yang X, Song J, Fillmore S, Pang X, Zhang Z. 2011. Effect of high temperature on color, chlorophyll fluorescence and volatile biosynthesis in green-ripe banana fruit. Postharvest Biology and Technology 62:246−257

doi: 10.1016/j.postharvbio.2011.06.011
[38]

Moreno JL, Tran T, Cantero-Tubilla B, López-López K, Becerra Lopez Lavalle LA, et al. 2021. Physicochemical and physiological changes during the ripening of banana (Musaceae) fruit grown in Colombia. International Journal of Food Science and Technology 56:1171−1183

doi: 10.1111/ijfs.14851