[1]

Kee SH, Chiongson JBV, Saludes JP, Vigneswari S, Ramakrishna S, et al. 2021. Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories–a viable domain of circular economy. Environmental Pollution 271:116311

doi: 10.1016/j.envpol.2020.116311
[2]

Massaccesi L, Nogués I, Mazzurco Miritana V, Passatore L, Zacchini M, et al. 2025. Biochar production to support circular bioeconomy: from waste biomass to a valuable product. In Biochar Ecotechnology for Sustainable Agriculture and Environment, eds Kumar A, Prasad MNV, Kumari P, Solanki MK. Amsterdam: Elsevier. pp. 55−79 doi: 10.1016/B978-0-443-29855-4.00003-5

[3]

Wang D, Liu Y, Wei X, Shi Y, Xie X, et al. 2025. Enhancing livestock manure composting efficiency through advanced biochar functionalization: a critical review. Environmental Chemistry and Ecotoxicology 7:2345−2355

doi: 10.1016/j.enceco.2025.10.010
[4]

Yasmin N, Jamuda M, Panda AK, Samal K, Nayak JK. 2022. Emission of greenhouse gases (GHGs) during composting and vermicomposting: measurement, mitigation, and perspectives. Energy Nexus 7:100092

doi: 10.1016/j.nexus.2022.100092
[5]

Bernal MP, Sommer SG, Chadwick D, Qing C, Li G, et al. 2017. Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. Advances in Agronomy 144:143−233

doi: 10.1016/bs.agron.2017.03.002
[6]

Zhang K, Zheng J, Liu K, Gao L, Bi R, et al. 2026. Optimizing intermittent rotary aeration to enhance efficiency and reduce greenhouse gas and ammonia emissions during fish manure composting. Journal of Environmental Management 398:128414

doi: 10.1016/j.jenvman.2025.128414
[7]

Abdellah YAY, Shi ZJ, Luo YS, Hou WT, Yang X, et al. 2022. Effects of different additives and aerobic composting factors on heavy metal bioavailability reduction and compost parameters: a meta-analysis. Environmental Pollution 307:119549

doi: 10.1016/j.envpol.2022.119549
[8]

Li Y, Li S, Sun X, Wang H. 2025. Effects of adding fungal agents on greenhouse gas emissions and fungal dynamics in green waste composting processes. Journal of Environmental Chemical Engineering 13:116952

doi: 10.1016/j.jece.2025.116952
[9]

Pan C, Yang H, Gao W, Wei Z, Song C, et al. 2024. Optimization of organic solid waste composting process through iron-related additives: a systematic review. Journal of Environmental Management 351:119952

doi: 10.1016/j.jenvman.2023.119952
[10]

Sánchez A, Artola A, Font X, Gea T, Barrena R, et al. 2015. Greenhouse gas emissions from organic waste composting. Environmental Chemistry Letters 13:223−238

doi: 10.1007/s10311-015-0507-5
[11]

Ba S, Qu Q, Zhang K, Groot JCJ. 2020. Meta-analysis of greenhouse gas and ammonia emissions from dairy manure composting. Biosystems Engineering 193:126−137

doi: 10.1016/j.biosystemseng.2020.02.015
[12]

Liu Y, Ma R, Li D, Qi C, Han L, et al. 2020. Effects of calcium magnesium phosphate fertilizer, biochar, and spent mushroom substrate on compost maturity and gaseous emissions during pig manure composting. Journal of Environmental Management 267:110649

doi: 10.1016/j.jenvman.2020.110649
[13]

Tahsini MJ, Nikaeen M, Mohammadi F, Taghipour A, Tahmasebi M, et al. 2025. Composting of municipal solid waste with microbial-inoculated biochar amendment: Impact on process and end-product quality. Biochar 7:25

doi: 10.1007/s42773-025-00426-6
[14]

Wang N, He Y, Zhao K, Lin X, He X, et al. 2024. Greenhouse gas emission characteristics and influencing factors of agricultural waste composting process: a review. Journal of Environmental Management 354:120337

doi: 10.1016/j.jenvman.2024.120337
[15]

Li H, Li X, Zhang D, Xu Y. 2023. Addition of exogenous microbial agents increases hydrogen sulfide emissions during aerobic composting of kitchen waste by improving bio-synergistic effects. Bioresource Technology 384:129334

doi: 10.1016/j.biortech.2023.129334
[16]

Xue S, Zhou L, Zhong M, Kumar Awasthi M, Mao H. 2021. Bacterial agents affected bacterial community structure to mitigate greenhouse gas emissions during sewage sludge composting. Bioresource Technology 337:125397

doi: 10.1016/j.biortech.2021.125397
[17]

He X, Yin H, Han L, Cui R, Fang C, et al. 2019. Effects of biochar size and type on gaseous emissions during pig manure/wheat straw aerobic composting: insights into multivariate-microscale characterization and microbial mechanism. Bioresource Technology 271:375−382

doi: 10.1016/j.biortech.2018.09.104
[18]

Fu T, Shen C, Mi H, Tang J, Li L, et al. 2025. Alternating electric field as an effective inhibitor of bioavailability and phytotoxicity of heavy metals during electric field-assisted aerobic composting. Journal of Hazardous Materials 490:137842

doi: 10.1016/j.jhazmat.2025.137842
[19]

Chen H, Li H, Sun T, Huang X, Li Y, et al. 2025. Effects of superphosphate on greenhouse gas emissions and compost quality during industrial scale in-vessel swine manure composting. Agriculture 2:148

doi: 10.3390/agriculture15020148
[20]

Dang R, Cai Y, Li J, Kong Y, Jiang T, et al. 2024. Biochar reduces gaseous emissions during poultry manure composting: evidence from the evolution of associated functional genes. Journal of Cleaner Production 452:142060

doi: 10.1016/j.jclepro.2024.142060
[21]

Tran HT, Binh QA, Van Tung T, Pham DT, Hoang HG, et al. 2024. A critical review on characterization, human health risk assessment and mitigation of malodorous gaseous emission during the composting process. Environmental Pollution 351:124115

doi: 10.1016/j.envpol.2024.124115
[22]

Zhang Y, Deng F, Su X, Su H, Li D. 2024. Semi-permeable membrane-covered high-temperature aerobic composting: a review. Journal of Environmental Management 356:120741

doi: 10.1016/j.jenvman.2024.120741
[23]

Jiang T, Li G, Tang Q, Ma X, Wang G, et al. 2015. Effects of aeration method and aeration rate on greenhouse gas emissions during composting of pig feces in pilot scale. Journal of Environmental Sciences 31:124−132

doi: 10.1016/j.jes.2014.12.005
[24]

Zhang L, Fan R, Li W, Li G, Luo W, et al. 2025. Unravelling biotic and abiotic mechanisms of mature compost to alleviate gaseous emissions in kitchen waste composting by metagenomic analysis. Bioresource Technology 419:132102

doi: 10.1016/j.biortech.2025.132102
[25]

Ma J, Ding Y, Cheng JCP, Jiang F, Tan Y, et al. 2020. Identification of high impact factors of air quality on a national scale using big data and machine learning techniques. Journal of Cleaner Production 244:118955

doi: 10.1016/j.jclepro.2019.118955
[26]

Tiwary A, Williams I. 2018. Air pollution control and mitigation. In Air Pollution, 4th edition. Boca Raton: CRC Press. pp. 361−413 doi: 10.1201/9780429469985-9

[27]

Agyarko-Mintah E, Cowie A, Van Zwieten L, Singh BP, Smillie R, et al. 2017. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Management 61:129−137

doi: 10.1016/j.wasman.2016.12.009
[28]

Wang Z, Xu Y, Yang T, Liu Y, Zheng T, et al. 2023. Effects of biochar carried microbial agent on compost quality, greenhouse gas emission and bacterial community during sheep manure composting. Biochar 5:3

doi: 10.1007/s42773-022-00202-w
[29]

Wang Y, Zhou P, Zheng Y, Wan J, Wang Y, et al. 2026. Zeolite enhanced nitrogen retention in chicken manure composting: differential responses of abundant and rare bacteria. Journal of Environmental Chemical Engineering 14:120654

doi: 10.1016/j.jece.2025.120654
[30]

Yang X, Duan P, Liu Q, Wang K, Li D. 2024. Addition of cellulose and hemicellulose degrading microorganisms intensified nitrous oxide emission during composting. Bioresource Technology 393:130100

doi: 10.1016/j.biortech.2023.130100
[31]

Fang C, Su Y, Zhuo Q, Wang X, Ma S, et al. 2024. Responses of greenhouse gas emissions to aeration coupled with functional membrane during industrial-scale composting of dairy manure: insights into bacterial community composition and function. Bioresource Technology 393:130079

doi: 10.1016/j.biortech.2023.130079
[32]

Ding S, Du S, Zhang K, Wu Y, Xu X, et al. 2025. Intelligent aeration strategy for optimizing food waste composting and enhancing humification. Chemical Engineering Journal 521:166668

doi: 10.1016/j.cej.2025.166668
[33]

Yu J, Gu J, Wang X, Guo H, Wang J, et al. 2020. Effects of inoculation with lignocellulose-degrading microorganisms on nitrogen conversion and denitrifying bacterial community during aerobic composting. Bioresource Technology 313:123664

doi: 10.1016/j.biortech.2020.123664
[34]

Pardo G, Moral R, Aguilera E, del Prado A. 2015. Gaseous emissions from management of solid waste: a systematic review. Global Change Biology 21:1313−1327

doi: 10.1111/gcb.12806
[35]

Nordahl SL, Devkota JP, Amirebrahimi J, Smith SJ, Breunig HM, et al. 2020. Life-cycle greenhouse gas emissions and human health trade-offs of organic waste management strategies. Environmental Science & Technology 54:9200−9209

doi: 10.1021/acs.est.0c00364
[36]

Nordahl SL, Preble CV, Kirchstetter TW, Scown CD. 2023. Greenhouse gas and air pollutant emissions from composting. Environmental Science & Technology 57:2235

doi: 10.1021/acs.est.2c05846
[37]

Wang M, Awasthi MK, Wang Q, Chen H, Ren X, et al. 2017. Comparison of additives amendment for mitigation of greenhouse gases and ammonia emission during sewage sludge co-composting based on correlation analysis. Bioresource Technology 243:520−527

doi: 10.1016/j.biortech.2017.06.158
[38]

Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 36:1−48

doi: 10.18637/jss.v036.i03
[39]

Fenoglio MS, Rossetti MR, Videla M, Baselga A. 2020. Negative effects of urbanization on terrestrial arthropod communities: a meta-analysis. Global Ecology and Biogeography 29:1412−1429

doi: 10.1111/geb.13107
[40]

Wang P, Kuzyakov Y, Wang Y, Liu Y, Liu J, et al. 2025. Quantifying microbial necromass contributions to soil carbon sequestration under diverse cropland management practices: a meta-analysis. Journal of Environmental Management 388:126008

doi: 10.1016/j.jenvman.2025.126008
[41]

Nakagawa S, Lagisz M, O'Dea RE, Rutkowska J, Yang Y, et al. 2021. The orchard plot: cultivating a forest plot for use in ecology, evolution, and beyond. Research Synthesis Methods 12:4−12

doi: 10.1002/jrsm.1424
[42]

Latterini F, Dyderski MK, Horodecki P, Rawlik M, Stefanoni W, et al. 2024. A meta-analysis of the effects of ground-based extraction technologies on fine roots in forest soils. Land Degradation & Development 35:9−21

doi: 10.1002/ldr.4902
[43]

Dokulilová T, Koutný T, Vítěz T. 2018. Effect of zinc and copper on anaerobic stabilization of sewage sludge. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 66:357−363

doi: 10.11118/actaun201866020357
[44]

Zhu H, Liu Y, Yao R. 2024. Impacts of biochar and gypsum on ammonia-oxidizing microorganisms in coastal saline soil. Agronomy 14:1756

doi: 10.3390/agronomy14081756
[45]

Abdellah YAY, Shi ZJ, Sun SS, Luo YS, Yang X, et al. 2022. An assessment of composting conditions, humic matters formation and product maturity in response to different additives: a meta-analysis. Journal of Cleaner Production 366:132953

doi: 10.1016/j.jclepro.2022.132953
[46]

Zhao X Xu K, Wang J, Wang Z, Pan R, et al. 2022. Potential of biochar integrated manganese sulfate for promoting pig manure compost humification and its biological mechanism. Bioresource Technology 357:127350

doi: 10.1016/j.biortech.2022.127350
[47]

Ansari SA, Shakeel A, Sawarkar R, Maddalwar S, Khan D, et al. 2023. Additive facilitated co-composting of lignocellulosic biomass waste, approach towards minimizing greenhouse gas emissions: an up-to-date review. Environmental Research 224:115529

doi: 10.1016/j.envres.2023.115529
[48]

Yin Z, Zhang L, Li R. 2021. Effects of additives on physical, chemical, and microbiological properties during green waste composting. Bioresource Technology 340:125719

doi: 10.1016/j.biortech.2021.125719
[49]

Zhan M, Shao H, Zhuo Q, Huang G, Wang X, et al. 2025. Effects of nano-selenium on greenhouse gas emissions during composting: insights into microbial subcommunities of different richness. Environmental Technology & Innovation 39:104313

doi: 10.1016/j.eti.2025.104313
[50]

Sayara T, Sánchez A. 2021. Gaseous emissions from the composting process: controlling parameters and strategies of mitigation. Processes 9:1844

doi: 10.3390/pr9101844
[51]

Chen L, Chen Y, Li Y, Liu Y, Jiang H, et al. 2023. Improving the humification by additives during composting: a review. Waste Management 158:93−106

doi: 10.1016/j.wasman.2022.12.040
[52]

Shan G, Li W, Gao Y, Tan W, Xi B. 2021. Additives for reducing nitrogen loss during composting: a review. Journal of Cleaner Production 307:127308

doi: 10.1016/j.jclepro.2021.127308
[53]

Liao J, Hu A, Zhao Z, Liu X, Jiang C, et al. 2021. Biochar with large specific surface area recruits N2O-reducing microbes and mitigate N2O emission. Soil Biology and Biochemistry 156:108212

doi: 10.1016/j.soilbio.2021.108212
[54]

Zhang Y, Huang M, Zheng F, Guo S, Song X, et al. 2021. Decreased methane emissions associated with methanogenic and methanotrophic communities in a pig manure windrow composting system under calcium superphosphate amendment. International Journal of Environmental Research and Public Health 18:6244

doi: 10.3390/ijerph18126244
[55]

Li M, Li S, Chen S, Meng Q, Wang Y, et al. 2023. Measures for controlling gaseous emissions during composting: a review. International Journal of Environmental Research and Public Health 20:3587

doi: 10.3390/ijerph20043587
[56]

Ambrose HW, Dalby FR, Feilberg A, Kofoed MVW. 2023. Additives and methods for the mitigation of methane emission from stored liquid manure. Biosystems Engineering 229:209−245

doi: 10.1016/j.biosystemseng.2023.03.015
[57]

Geng X, Yang H, Gao W, Yue J, Mu D, et al. 2024. Greenhouse gas emission characteristics during kitchen waste composting with biochar and zeolite addition. Bioresource Technology 399:130575

doi: 10.1016/j.biortech.2024.130575
[58]

Shen B, Zheng L, Zheng X, Yang Y, Xiao D, et al. 2024. Insights from meta-analysis on carbon to nitrogen ratios in aerobic composting of agricultural residues. Bioresource Technology 413:131416

doi: 10.1016/j.biortech.2024.131416
[59]

Zhang B, Xu Z, Jiang T, Huda N, Li G, et al. 2020. Gaseous emission and maturity in composting of livestock manure and tobacco wastes: effects of aeration intensities and mitigation by physiochemical additives. Environmental Technology & Innovation 19:100899

doi: 10.1016/j.eti.2020.100899
[60]

De Boer HC, Wiersma M. 2021. Thermophilic composting of the pack can reduce nitrogen loss from compost-bedded dairy barns. Biosystems Engineering 210:20−32

doi: 10.1016/j.biosystemseng.2021.07.015
[61]

Tian H, Liu J, Zhang Y, Yue P. 2023. A novel integrated industrial-scale biological reactor for odor control in a sewage sludge composting facility: performance, pollutant transformation, and bioaerosol emission mechanism. Waste Management 164:9−19

doi: 10.1016/j.wasman.2023.03.021
[62]

Higgins BT, Chaump K, Wang Q, Prasad R, Dey P. 2021. Moisture content and aeration control mineral nutrient solubility in poultry litter. Journal of Environmental Management 300:113787

doi: 10.1016/j.jenvman.2021.113787
[63]

Kjeldsen KU, Joulian C, Ingvorsen K. 2004. Oxygen tolerance of sulfate-reducing bacteria in activated sludge. Environmental Science & Technology 38:2038−2043

doi: 10.1021/es034777e
[64]

Yuan J, Chadwick D, Zhang D, Li G, Chen S, et al. 2016. Effects of aeration rate on maturity and gaseous emissions during sewage sludge composting. Waste Management 56:403−410

doi: 10.1016/j.wasman.2016.07.017
[65]

Chang R, Li Y, Chen Q, Gong X, Qi Z. 2020. Effects of carbon-based additives and ventilation rate on nitrogen loss and microbial community during chicken manure composting. PLoS One 15:e0229880

doi: 10.1371/journal.pone.0229880
[66]

Haider S, Song J, Bai J, Wang X, Ren G, et al. 2025. Toward low-emission agriculture: synergistic contribution of inorganic nitrogen and organic fertilizers to GHG emissions and strategies for mitigation. Plants 14:1551

doi: 10.3390/plants14101551