[1]

Gariano RF, Gardner TW. 2005. Retinal angiogenesis in development and disease. Nature 438:960−966

doi: 10.1038/nature04482
[2]

Campochiaro PA. 2015. Molecular pathogenesis of retinal and choroidal vascular diseases. Progress in Retinal and Eye Research 49:67−81

doi: 10.1016/j.preteyeres.2015.06.002
[3]

Wong TY, Cheung CMG, Larsen M, Sharma S, Simó R. 2016. Diabetic retinopathy. Nature Reviews Disease Primers 2:16012

doi: 10.1038/nrdp.2016.12
[4]

Campochiaro PA, Sophie R, Pearlman J, Brown DM, Boyer DS, et al. 2014. Long-term outcomes in patients with retinal vein occlusion treated with ranibizumab. Ophthalmology 121:209−219

doi: 10.1016/j.ophtha.2013.08.038
[5]

Campbell M, Doyle SL. 2019. Current perspectives on established and novel therapies for pathological neovascularization in retinal disease. Biochemical Pharmacology 164:321−325

doi: 10.1016/j.bcp.2019.04.029
[6]

Xie J, Jiang ZX, Zhang L, Cui Y, Wang J, et al. 2018. Analysis of genetic susceptibility to proliferative diabetic retinopathy in Han patients with type 2 diabetes from Southern China by whole exome sequencing and SnapShot. Chinese Journal of Experimental Ophthalmology 36:774−779 (in Chinese)

doi: 10.3760/CMA.J.ISSN.2095-0160.2018.10.008
[7]

Chen X, Xie J, Cui Y, Zhang L, Yu H, et al. 2021. Cytoskeleton-associated protein 2 (CKAP2) is regulated by vascular endothelial growth factor and p53 in retinal capillary endothelial cells under high-glucose conditions. Molecular and Cellular Endocrinology 535:111378

doi: 10.1016/j.mce.2021.111378
[8]

Kim HS, Koh JS, Choi YB, Ro J, Kim HK, et al. 2014. Chromatin CKAP2, a new proliferation marker, as independent prognostic indicator in breast cancer. PLoS One 9:e98160

doi: 10.1371/journal.pone.0098160
[9]

Wang K, Huang R, Li G, Zeng F, Zhao Z, et al. 2018. CKAP2 expression is associated with glioma tumor growth and acts as a prognostic factor in high-grade glioma. Oncology Reports 40:2036−2046

doi: 10.3892/or.2018.6611
[10]

Ma HN, Chen HJ, Liu JQ, Li WT. 2022. Long non-coding RNA DLEU1 promotes malignancy of breast cancer by acting as an indispensable coactivator for HIF-1α-induced transcription of CKAP2. Cell Death & Disease 13:625

doi: 10.1038/s41419-022-04880-z
[11]

Jia W, Wang C. 2023. KNTC1 and MCM2 are the molecular targets of gallbladder cancer. Aging 15:7008−7022

doi: 10.18632/aging.204889
[12]

Ban G, Jeong JS, Kim A, Kim SJ, Han SY, et al. 2011. Selective and efficient retardation of cancers expressing cytoskeleton-associated protein 2 by targeted RNA replacement. International Journal of Cancer 129:1018−1029

doi: 10.1002/ijc.25988
[13]

Lee SW, Jeong JS. 2013. Use of tumor-targeting trans-splicing ribozyme for cancer treatment. In Therapeutic Applications of Ribozymes and Riboswitches, eds. Lafontaine D, Dubé A. Totowa, NJ: Humana Press. pp. 83−95 doi: 10.1007/978-1-62703-730-3_7

[14]

Usui-Ouchi A, Aguilar E, Murinello S, Prins M, Gantner ML, et al. 2020. An allosteric peptide inhibitor of HIF-1α regulates hypoxia-induced retinal neovascularization. Proceedings of the National Academy of Sciences of the United States of America 117:28297−28306

doi: 10.1073/pnas.2017234117
[15]

Smith TL, Oubaha M, Cagnone G, Boscher C, Kim JS, et al. 2021. eNOS controls angiogenic sprouting and retinal neovascularization through the regulation of endothelial cell polarity. Cellular and Molecular Life Sciences 79:37

doi: 10.1007/s00018-021-04042-y
[16]

Tang FS, Yuan HL, Liu JB, Zhang G, Chen SY, et al. 2022. Glutamate transporters EAAT2 and EAAT5 differentially shape synaptic transmission from rod bipolar cell terminals. eNeuro 9:ENEURO.0074-0022.2022

doi: 10.1523/eneuro.0074-22.2022
[17]

Zhang G, Liu JB, Yuan HL, Chen SY, Singer JH, et al. 2022. Multiple calcium channel types with unique expression patterns mediate retinal signaling at bipolar cell ribbon synapses. The Journal of Neuroscience 42:6487−6505

doi: 10.1523/jneurosci.0183-22.2022
[18]

Liu JB, Yuan HL, Zhang G, Ke JB. 2024. Comprehensive characterization of a subfamily of Ca2+-binding proteins in mouse and human retinal neurons at single-cell resolution. eNeuro 11:ENEURO.0145-0124.2024

doi: 10.1523/eneuro.0145-24.2024
[19]

Levine JH, Simonds EF, Bendall SC, Davis KL, Amir ED, et al. 2015. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162:184−197

doi: 10.1016/j.cell.2015.05.047
[20]

Connor KM, Krah NM, Dennison RJ, Aderman CM, Chen J, et al. 2009. Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nature Protocols 4:1565−1573

doi: 10.1038/nprot.2009.187
[21]

Pan X, Li X, Dong L, Liu T, Zhang M, et al. 2024. Tumour vasculature at single-cell resolution. Nature 632:429−436

doi: 10.1038/s41586-024-07698-1
[22]

Dong X, Lei Y, Yu Z, Wang T, Liu Y, et al. 2021. Exosome-mediated delivery of an anti-angiogenic peptide inhibits pathological retinal angiogenesis. Theranostics 11:5107−5126

doi: 10.7150/thno.54755
[23]

Zhang J, Qin Y, Martinez M, Flores-Bellver M, Rodrigues M, et al. 2021. HIF-1α and HIF-2α redundantly promote retinal neovascularization in patients with ischemic retinal disease. The Journal of Clinical Investigation 131:e139202

doi: 10.1172/jci139202
[24]

Semenza GL. 2012. Hypoxia-inducible factors in physiology and medicine. Cell 148:399−408

doi: 10.1016/j.cell.2012.01.021
[25]

de Heer EC, Jalving M, Harris AL. 2020. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. Journal of Clinical Investigation 130:5074−5087

doi: 10.1172/JCI137552
[26]

Zhong Z, Cheng S, Liu Y. 2024. CKAP2 regulated by TFDP1 promotes metastasis and proliferation of colorectal cancer through affecting the tumor microenvironment. Journal of Microbiology and Biotechnology 34:2211−2222

doi: 10.4014/jmb.2407.07008
[27]

Liu S, Guo R, Xu H, Yang J, Luo H, et al. 2023. 14-3-3σ-NEDD4L axis promotes ubiquitination and degradation of HIF-1α in colorectal cancer. Cell Reports 42:112870

doi: 10.1016/j.celrep.2023.112870
[28]

Chen X, Li X, Zhang W, He J, Xu B, et al. 2018. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway. Metabolism 83:256−270

doi: 10.1016/j.metabol.2018.03.004
[29]

Han RH, Huang HM, Han H, Chen H, Zeng F, et al. 2021. Propofol postconditioning ameliorates hypoxia/reoxygenation induced H9c2 cell apoptosis and autophagy via upregulating forkhead transcription factors under hyperglycemia. Military Medical Research 8:58

doi: 10.1096/fasebj.2020.34.s1.08671
[30]

Cowman SJ, Koh MY. 2022. Revisiting the HIF switch in the tumor and its immune microenvironment. Trends in Cancer 8:28−42

doi: 10.1016/j.trecan.2021.10.004
[31]

Bae T, Hallis SP, Kwak MK. 2024. Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Experimental & Molecular Medicine 56:501−514

doi: 10.1038/s12276-024-01180-8
[32]

Tóth A, Lente G, Csiki DM, Balogh E, Szöőr Á, et al. 2024. Activation of PERK/eIF2α/ATF4/CHOP branch of endoplasmic reticulum stress response and cooperation between HIF-1α and ATF4 promotes Daprodustat-induced vascular calcification. Frontiers in Pharmacology 15:1399248

doi: 10.3389/fphar.2024.1399248
[33]

Paim LMG, Lopez-Jauregui AA, McAlear TS, Bechstedt S. 2024. The spindle protein CKAP2 regulates microtubule dynamics and ensures faithful chromosome segregation. Proceedings of the National Academy of Sciences of the United States of America 121:e2318782121

doi: 10.1101/2023.10.27.564280
[34]

Zhuang J, Zhang X, Liu Q, Zhu M, Huang X. 2022. Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Theranostics 12:6223−6241

doi: 10.7150/thno.73421
[35]

Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, et al. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology 16:4604−4613

doi: 10.1128/MCB.16.9.4604