[1]

Bhui B, Vairakannu P. 2019. Prospects and issues of integration of co-combustion of solid fuels (coal and biomass) in chemical looping technology. Journal of Environmental Management 231:1241−1256

doi: 10.1016/j.jenvman.2018.10.092
[2]

Thanigaivel S, Vickram S, Manikandan S, Deena SR, Subbaiya R, et al. 2022. Sustainability and carbon neutralization trends in microalgae bioenergy production from wastewater treatment: a review. Bioresource Technology 364:128057

doi: 10.1016/j.biortech.2022.128057
[3]

Deng M, Li P, Shan M, Yang X. 2019. Characterizing dynamic relationships between burning rate and pollutant emission rates in a forced-draft gasifier stove consuming biomass pellet fuels. Environmental Pollution 255:113338

doi: 10.1016/j.envpol.2019.113338
[4]

Wang Z, Liu H, Qiu K, Cen K, Zhou H. 2022. Experimental study on the influencing factors of NO formation during biomass combustion. Chemical Industry and Engineering 39:75−82

doi: 10.13353/j.issn.1004.9533.20210309
[5]

Banerjee N. 2023. Biomass to energy — an analysis of current technologies, prospects, and challenges. BioEnergy Research 16:683−716

doi: 10.1007/s12155-022-10500-7
[6]

Du W, Zhu X, Chen Y, Liu W, Wang W, et al. 2018. Field-based emission measurements of biomass burning in typical Chinese built-in-place stoves. Environmental Pollution 242:1587−1597

doi: 10.1016/j.envpol.2018.07.121
[7]

Proto AR, Palma A, Paris E, Papandrea SF, Vincenti B, et al. 2021. Assessment of wood chip combustion and emission behavior of different agricultural biomasses. Fuel 289:119758

doi: 10.1016/j.fuel.2020.119758
[8]

Palma A, Gallucci F, Papandrea S, Carnevale M, Paris E, et al. 2023. Experimental study of the combustion of and emissions from olive and citrus pellets in a small boiler. Fire 6:288

doi: 10.3390/fire6080288
[9]

Paris E, Carnevale M, Guerriero E, Palma A, Vincenti B, et al. 2023. Fixed source monitoring system for marker emission during biomass combustion. Renewable Energy 208:597−603

doi: 10.1016/j.renene.2023.03.116
[10]

Shafie SM, Masjuki HH, Mahlia TMI. 2014. Life cycle assessment of rice straw-based power generation in Malaysia. Energy 70:401−410

doi: 10.1016/j.energy.2014.04.014
[11]

Freer-Smith P, Bailey-Bale JH, Donnison CL, Taylor G. 2023. The good, the bad, and the future: systematic review identifies best use of biomass to meet air quality and climate policies in California. GCB Bioenergy 15:1312−1328

doi: 10.1111/gcbb.13101
[12]

Sánchez-García S, Athanassiadis D, Martínez-Alonso C, Tolosana E, Majada J, et al. 2017. A GIS methodology for optimal location of a wood-fired power plant: quantification of available woodfuel, supply chain costs and GHG emissions. Journal of Cleaner Production 157:201−212

doi: 10.1016/j.jclepro.2017.04.058
[13]

Ji X, Chen GQ, Chen B, Jiang MM. 2009. Exergy-based assessment for waste gas emissions from Chinese transportation. Energy Policy 37:2231−2240

doi: 10.1016/j.enpol.2009.02.012
[14]

Zhang Y, Gao X, Li B, Li H, Zhao W. 2018. Assessing the potential environmental impact of woody biomass using quantitative universal exergy. Journal of Cleaner Production 176:693−703

doi: 10.1016/j.jclepro.2017.12.159
[15]

Gao R. 2017. A technical and economic analysis of flue gas desulfurization of biomass boiler. Environmental Protection and Technology 3:10−12 (in Chinese)

doi: 10.3969/j.issn.1674-0254.2017.04.003
[16]

Zhang X, Luo Z, Wang X, Yu C. 2023. Study of pollutant emission characteristics of typical agricultural and forestry waste under different combustion methods. Energy Engineering 43:39−46 (in Chinese)

doi: 10.16189/j.nygc.2023.05.006
[17]

Tan W, Xu Y, Wang S, Zuo G, Dong X, et al. 2013. Design and performance test of multi-function stove for biomass fuel. Transactions of the Chinese Society of Agricultural Engineering 29:10−17 (in Chinese)

doi: 10.3969/j.issn.1002-6819.2013.15.002
[18]

Kraszkiewicz A, Przywara A, Kachel-Jakubowska M, Lorencowicz E. 2015. Combustion of plant biomass pellets on the grate of a low power boiler. Agriculture and Agricultural Science Procedia 7:131−138

doi: 10.1016/j.aaspro.2015.12.007
[19]

Wang D, Liu L, Yuan Y, Yang H, Zhou Y, et al. 2020. Design and key heating power parameters of a newly-developed household biomass briquette heating boiler. Renewable Energy 147:1371−1379

doi: 10.1016/j.renene.2019.09.081
[20]

Khalsa JHA, Döhling F, Berger F. 2016. Foliage and grass as fuel pellets–small scale combustion of washed and mechanically leached biomass. Energies 9:361

doi: 10.3390/en9050361
[21]

Kortelainen M, Jokiniemi J, Nuutinen I, Torvela T, Lamberg H, et al. 2015. Ash behaviour and emission formation in a small-scale reciprocating-grate combustion reactor operated with wood chips, reed canary grass and barley straw. Fuel 143:80−88

doi: 10.1016/j.fuel.2014.11.006
[22]

Zeng T, Weller N, Pollex A, Lenz V. 2016. Blended biomass pellets as fuel for small scale combustion appliances: influence on gaseous and total particulate matter emissions and applicability of fuel indices. Fuel 184:689−700

doi: 10.1016/j.fuel.2016.07.047
[23]

Katarzyna P, Marek J. 2018. Gaseous emissions during agricultural biomass combustion in a 50 KW moving step grate boiler. Chemical and Process Engineering 39:197−208

doi: 10.24425/119109
[24]

Nada B, Benoit B, Gwenaëlle T, Yann R. 2022. Comparison of ashes produced in a biomass moving grate boiler by wood chips and sewage sludge. Fluid Dynamics & Materials Processing 181419−1425

doi: 10.32604/fdmp.2022.021753
[25]

Zhang X, Chen Q, Bradford R, Sharifi V, Swithenbank J. 2010. Experimental investigation and mathematical modelling of wood combustion in a moving grate boiler. Fuel Processing Technology 91:1491−1499

doi: 10.1016/j.fuproc.2010.05.026
[26]

Razmjoo N, Sefidari H, Strand M. 2014. Characterization of hot gas in a 4MW reciprocating grate boiler. Fuel Processing Technology 124:21−27

doi: 10.1016/j.fuproc.2014.02.011
[27]

Sefidari H, Razmjoo N, Strand M. 2014. An experimental study of combustion and emissions of two types of woody biomass in a 12-MW reciprocating-grate boiler. Fuel 135:120−129

doi: 10.1016/j.fuel.2014.06.051
[28]

Hu Z, Guo X, Hao W, Zheng W. 2010. Study on performance test of yellow straw biomass firing boiler. Thermal Power Generation 39:56−60 (in Chinese)

doi: 10.3969/j.issn.1002-3364.2010.12.056
[29]

Su X, Ma L, Fang Q, Yin C, Zhuang H, et al. 2024. Optimizing biomass combustion in a 130 t/h grate boiler: assessing gas-phase reaction models and primary air distribution strategies. Applied Thermal Engineering 238:122043

doi: 10.1016/j.applthermaleng.2023.122043
[30]

Yang YB, Newman R, Sharifi V, Swithenbank J, Ariss J. 2007. Mathematical modelling of straw combustion in a 38MWe power plant furnace and effect of operating conditions. Fuel 86:129−142

doi: 10.1016/j.fuel.2006.06.023
[31]

Sun ZA, Jin BS, Zhang MY, Liu RP, Zhang Y. 2008. Experimental study on cotton stalk combustion in a circulating fluidized bed. Applied Energy 85:1027−1040

doi: 10.1016/j.apenergy.2008.02.018
[32]

Hu C, Zhao P, Li N, Mou K, Yuan Y, et al. 2019. Experimental investigation of combustion characteristic for mixed fuel of chicken manure and rice husk in CFB test facility. Power System Engineering 35:29−32

[33]

Wang P, Li D. 2021. Experimental study of combustion optimization and adjustment of 50 MW biomass circulating fluidized bed boiler. Industrial Boilers 41:49−53 (in Chinese)

doi: 10.16558/j.cnki.issn1004-8774.2021.06.011
[34]

Ke X, Zhang Y, Liu X, Wu Y, Huang Z, et al. 2022. Development of biomass-fired circulating fluidized bed boiler with high steam parameters based on theoretical analysis and industrial practices. Journal of the Energy Institute 105:415−423

doi: 10.1016/j.joei.2022.10.011
[35]

Wang X. 2011. Mechanism research and application on biomass combustion and NOx reduction by biomass co-firing. Thesis. Xi'an Jiaotong University, Xian, China doi: 10.7666/d.D347801 (in Chinese)

[36]

Mahmoudi S, Baeyens J, Seville JPK. 2010. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass and Bioenergy 34:1393−1409

doi: 10.1016/j.biombioe.2010.04.013
[37]

Zhang J, Li Y, Mei L, Yu X, Lv X, et al. 2023. Study on the effect of secondary air layout on CO reduction performance in a 75 t/h biomass CFB boiler burning wheat straw. Energies 16:3312

doi: 10.3390/en16083312
[38]

Ghiwe SS, Kalamkar VR, Sharma SK, Sawarkar PD. 2023. Numerical and experimental study on the performance of a hybrid draft biomass cookstove. Renewable Energy 205:53−65

doi: 10.1016/j.renene.2023.01.077
[39]

Chen G, Li Y, Peng H, Li Y, Jiang Z. 2015. Characteristics of flue gas emissions during large wood pellet combustion. Transactions of the Chinese Society of Agricultural Engineering 31:215−220 (in Chinese)

doi: 10.3969/j.issn.1002-6819.2015.07.031
[40]

Li X, Cui Y, Liu H, Wang Y, Wang X. 2024. Study on flue gas emission of biomass pellet fuel combustion. Modern Salt and Chemical Industry 51:45−48 (in Chinese)

doi: 10.3969/j.issn.1005-880X.2024.06.017
[41]

Ke X, Lv J, Guo X, Shen Z, Zhang M, et al. 2022. Development and application of high-parameter biomass-fired circulating fluidized bed boiler technology. Thermal Power Generation 51:1−8 (in Chinese)

doi: 10.19666/j.rlfd.202112250
[42]

Wang J, Hou D, Liu Z, Tao J, Yan B, et al. 2022. Emergy analysis of agricultural waste biomass for energy-oriented utilization in China: current situation and perspectives. Science of The Total Environment 849:157798

doi: 10.1016/j.scitotenv.2022.157798
[43]

Liu H, Chaney J, Li J, Sun C. 2013. Control of NOx emissions of a domestic/small-scale biomass pellet boiler by air staging. Fuel 103:792−798

doi: 10.1016/j.fuel.2012.10.028
[44]

Zhang Y, Fan X, Li B, Li H, Gao X. 2017. Assessing the potential environmental impact of fuel using exergy-cases of wheat straw and coal. International Journal of Exergy 23:85−100

doi: 10.1504/IJEX.2017.084517
[45]

Kopczyński M, Lasek JA, Iluk A, Zuwała J. 2017. The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing). Energy 140:1316−1325

doi: 10.1016/j.energy.2017.04.036
[46]

Song X, Li J, Sun H, Ma J, Xu Y, et al. 2023. Simulation and experimental study on the low NOx combustion of 35 Kw biomass boiler with air staging. Journal of Biobased Materials and Bioenergy 17:37−44

doi: 10.1166/jbmb.2023.2252
[47]

Yang W, Ni Y, Lei H. 2021. Biomass direct coupled combustion power generation technology for coal fired power station: a review. Thermal Power Generation 50:18−25 (in Chinese)

doi: 10.19666/j.rlfd.202003164
[48]

Ehrig R, Behrendt F. 2013. Co-firing of imported wood pellets – an option to efficiently save CO2 emissions in Europe? Energy Policy 59:283−300

doi: 10.1016/j.enpol.2013.03.060
[49]

Paris E, Carnevale M, Palma A, Vincenti B, Salerno M, et al. 2024. Biomass combustion in boiler: environmental monitoring of sugar markers and pollutants. Atmosphere 15:427

doi: 10.3390/atmos15040427
[50]

Palma A, Paris E, Carnevale M, Vincenti B, Perilli M, et al. 2022. Biomass combustion: evaluation of POPs emissions (VOC, PAH, PCB, PCDD/F) from three different biomass prunings (olive, citrus and grapevine). Atmosphere 13:1665

doi: 10.3390/atmos13101665