[1]

Quilliam RS, Glanville HC, Wade SC, Jones DL. 2013. Life in the 'charosphere' – does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biology and Biochemistry 65:287−293

doi: 10.1016/j.soilbio.2013.06.004
[2]

Xue P, Hou R, Fu Q, Li T, Li M, et al. 2024. Mechanisms of phosphorus activation in charosphere and non-charosphere: the priming effect of biochar. Soil and Tillage Research 244:106195

doi: 10.1016/j.still.2024.106195
[3]

Yang H, Chen N, Yang K, Liu F, Yuan Y, et al. 2025. Microscale spatiotemporal variation of reactive oxygen species in the charosphere: underlying formation mechanism and their role in CO2 emission. Environmental Science & Technology 59:2095−2106

doi: 10.1021/acs.est.4c11955
[4]

Gao S, DeLuca TH. 2019. Use of microdialysis to assess short-term soil soluble N dynamics with biochar additions. Soil Biology and Biochemistry 136:107512

doi: 10.1016/j.soilbio.2019.06.008
[5]

Meng J, Li Y, Qiu Y, Luo Y, Fang Y, et al. 2023. Biochars regulate bacterial community and their putative functions in the charosphere: a mesh-bag field study. Journal of Soils and Sediments 23:596−605

doi: 10.1007/s11368-022-03362-1
[6]

Chen X, Lewis S, Heal KV, Lin Q, Sohi SP. 2021. Biochar engineering and ageing influence the spatiotemporal dynamics of soil pH in the charosphere. Geoderma 386:114919

doi: 10.1016/j.geoderma.2020.114919
[7]

Yu M, Meng J, Yu L, Su W, Afzal M, et al. 2019. Changes in nitrogen related functional genes along soil pH, C and nutrient gradients in the charosphere. Science of The Total Environment 650:626−632

doi: 10.1016/j.scitotenv.2018.08.372
[8]

Yu M, Su WQ, Huang L, Parikh SJ, Tang C, et al. 2021. Bacterial community structure and putative nitrogen-cycling functional traits along a charosphere gradient under waterlogged conditions. Soil Biology and Biochemistry 162:108420

doi: 10.1016/j.soilbio.2021.108420
[9]

Wang L, Meng J, Li Z, Liu X, Xia F, et al. 2017. First "charosphere" view towards the transport and transformation of Cd with addition of manure derived biochar. Environmental Pollution 227:175−182

doi: 10.1016/j.envpol.2017.04.024
[10]

Lv G, Yang T, Chen Y, Hou H, Liu X, et al. 2021. Biochar-based fertilizer enhanced Cd immobilization and soil quality in soil-rice system. Ecological Engineering 171:106396

doi: 10.1016/j.ecoleng.2021.106396
[11]

Yang Z, Zhu P, Yan C, Wang D, Fang D, et al. 2021. Biosynthesized Schwertmannite@Biochar composite as a heterogeneous Fenton-like catalyst for the degradation of sulfanilamide antibiotics. Chemosphere 266:129175

doi: 10.1016/j.chemosphere.2020.129175
[12]

Lu R. 2000. Soil and Agro-chemical Analysis Methods. Beijing: China Agricultural Science and Technology Press. pp. 205−266

[13]

Jiang L, Zhang S, Gbon SSK, Wu Z, Yue X, et al. 2025. Amino-functionalized biochar enhanced Cd passivation in acidic, neutral and alkaline soils: effect and mechanism. Journal of Soils and Sediments 25:1514−1531

doi: 10.1007/s11368-025-04013-x
[14]

Ren X, He J, Chen Q, He F, Wei T, et al. 2022. Marked changes in biochar's ability to directly immobilize Cd in soil with aging: implication for biochar remediation of Cd-contaminated soil. Environmental Science and Pollution Research 29:73856−73864

doi: 10.1007/s11356-022-21000-8
[15]

Mehrab N, Chorom M, Norouzi Masir M, Fernandes de Souza M, Meers E. 2022. Effect of soil application of biochar produced from Cd-enriched maize on the available Cd in a calcareous soil. Environmental Earth Sciences 81:458

doi: 10.1007/s12665-022-10586-4
[16]

Wang X, Fu T, Li X, Chen L, Lin L, et al. 2025. Using biochar to immobilize the heavy metal Cd mobilized by covered soil-cultivated edible fungi Dectyophora rubrovolvata. Soil Use and Management 41:e70036

doi: 10.1111/sum.70036
[17]

Wang HB, Liu XP, Jin BJ, Shu YC, Sun CL, et al. 2024. High-molecular-weight dissolved organic matter enhanced phosphorus availability in paddy soils: evidence from field and microcosm experiments. Soil and Tillage Research 240:106099

doi: 10.1016/j.still.2024.106099
[18]

Li C, Li C, Chen M, Li C, Li C. 2025. Effects of biochar type and application rate on the labile organic carbon fractions of soil aggregates in tropical agricultural fields. Plant and Soil

doi: 10.1007/s11104-025-08036-8
[19]

Wu H, Zang S, Wang H, Guo D. 2025. Impact of biochar on carbon sequestration in permafrost region of Northeast China. Carbon Balance and Management 20:44

doi: 10.1186/s13021-025-00332-1
[20]

Li J, Li Q, Liang S, Zhang B, Wang J, et al. 2025. Aging mechanism of biochar based on fluorescence spectroscopy: assessing soil dissolved organic matter (DOM) dynamics and Cd bioavailability. Chemical Engineering Journal 505:159538

doi: 10.1016/j.cej.2025.159538
[21]

Li X, Jeyakumar P, Bolan N, Huang L, Rashid MS, et al. 2024. Biochar derived from urban green waste can enhance the removal of Cd from water and reduce doil Cd bioavailability. Toxics 12:8

doi: 10.3390/toxics12010008
[22]

Xue Z, Sui F, Qi Y, Pan S, Wang N, et al. 2025. Differences in soil Cd immobilization and blockage of rice Cd uptake by biochar derived from crop residue and bone − a 2-year field experiment. Ecotoxicology and Environmental Safety 290:117533

doi: 10.1016/j.ecoenv.2024.117533
[23]

Li D, Lai C, He H, Wen D, Cao Y, et al. 2025. Effectiveness of biochar on Cd migration and bioaccumulation in a multi-species alkaline fluvo-aquic soil system. Agronomy 15:1276

doi: 10.3390/agronomy15061276
[24]

Castillo-González H, Pérez-Villanueva M, Masís-Mora M, Castro-Gutiérrez V, Rodríguez-Rodríguez CE. 2017. Antibiotics do not affect the degradation of fungicides and enhance the mineralization of chlorpyrifos in biomixtures. Ecotoxicology and Environmental Safety 139:481−487

doi: 10.1016/j.ecoenv.2017.02.008
[25]

Li L, Liu S, Cheng M, Lai C, Zeng G, et al. 2021. Improving the Fenton-like catalytic performance of MnOx-Fe3O4/biochar using reducing agents: a comparative study. Journal of Hazardous Materials 406:124333

doi: 10.1016/j.jhazmat.2020.124333
[26]

Liu H, Liu Y, Li X, Zheng X, Feng X, et al. 2022. Adsorption and Fenton-like degradation of ciprofloxacin using corncob biochar-based magnetic iron−copper bimetallic nanomaterial in aqueous solutions. Nanomaterials 12:579

doi: 10.3390/nano12040579
[27]

Wang H, Zhuang M, Shan L, Wu J, Quan G, et al. 2022. Bimetallic FeNi nanoparticles immobilized by biomass-derived hierarchically porous carbon for efficient removal of Cr(VI) from aqueous solution. Journal of Hazardous Materials 423(Pt A):127098

doi: 10.1016/j.jhazmat.2021.127098
[28]

Beigi P, Ganjali F, Hassanzadeh-Afruzi F, Salehi MM, Maleki A. 2023. Enhancement of adsorption efficiency of crystal violet and chlorpyrifos onto pectin hydrogel@Fe3O4-bentonite as a versatile nanoadsorbent. Scientific Reports 13:10764

doi: 10.1038/s41598-023-38005-z
[29]

Cui L, Chen T, Quan G, Xiao B, Ma Y, et al. 2017. Renewable material-derived biochars for the efficient removal of 2,4-dichlorophen from aqueous solution: adsorption/desorption mechanisms. BioResources 12:4912−4925

doi: 10.15376/biores.12.3.4912-4925
[30]

Nasr FA, Doma HS, Nassar HF. 2009. Treatment of domestic wastewater using an anaerobic baffled reactor followed by a duckweed pond for agricultural purposes. The Environmentalist 29:270−279

doi: 10.1007/s10669-008-9188-y
[31]

Pingree MRA, DeLuca TH. 2017. Function of wildfire-deposited pyrogenic carbon in terrestrial ecosystems. Frontiers in Environmental Science 5:1672

doi: 10.3389/fenvs.2017.00053
[32]

Zhang H, Wu X, Zhang Q, Xue G, Duan X, et al. 2025. Performance and mechanism of tailings biochar composites for synergistic phytoremediation of soil heavy metal Cd. Water, Air, & Soil Pollution 236:289

doi: 10.1007/s11270-025-07895-2
[33]

Cui L, Fan Q, Sun J, Quan G, Yan J, et al. 2021. Changes in surface characteristics and adsorption properties of 2,4,6-trichlorophenol following Fenton-like aging of biochar. Scientific Reports 11:4293

doi: 10.1038/s41598-021-82129-z
[34]

Chen X, Gu F, Zhang D, Lin W, Tang J, et al. 2024. Investigating the two-dimensional distribution of soil pH and phosphorus in the charosphere: a short-term incubation experiment. Agronomy 14:2907

doi: 10.3390/agronomy14122907