[1]

Ippolito JA, Cui L, Kammann C, Wrage-Mönnig N, Estavillo JM, et al. 2020. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar 2:421−438

doi: 10.1007/s42773-020-00067-x
[2]

Weber K, Quicker P. 2018. Properties of biochar. Fuel 217:240−261

doi: 10.1016/j.fuel.2017.12.054
[3]

Jia H, Ben H, Wu F. 2021. Effect of biochar prepared from food waste through different thermal Treatment processes on crop growth. Processes 9:276

doi: 10.3390/pr9020276
[4]

Lehmann J. 2009. Terra Preta Nova – where to from here? In Amazonian Dark Earths: Wim Sombroek's Vision. eds. Woods WI, Teixeira WG, Lehmann J, Steiner C, WinklerPrins A, Rebellato L. Dordrecht: Springer. pp. 473−486 doi: 10.1007/978-1-4020-9031-8_28

[5]

Li Q, Jiang W, Lyu J. 2024. Soil health assessment of an acidic red soil agricultural area and its restoration with biochar soil conditioners. Soil Use and Management 40:e13002

doi: 10.1111/sum.13002
[6]

Wang X, Li J, Hao X, Wu Y. 2024. Recovering phosphate from sludge-incinerated ash by modified biochar as a soil conditioner and P-fertilizer. Journal of Environmental Chemical Engineering 12:113329

doi: 10.1016/j.jece.2024.113329
[7]

Ma J, Zheng L, Yu F. 2024. Current status and future prospects of biochar application in electrochemical energy storage devices: a bibliometric review. Desalination 581:117597

doi: 10.1016/j.desal.2024.117597
[8]

Atinafu DG, Choi JY, Nam J, Kang Y, Kim S. 2025. Insights into the effects of biomass feedstock and pyrolysis conditions on the energy storage capacity and durability of standard biochar-based phase-change composites. Biochar 7:18

doi: 10.1007/s42773-024-00396-1
[9]

Zhang J, Zou H, Liu J, Evrendilek F, Xie W, et al. 2021. Comparative (co-)pyrolytic performances and by-products of textile dyeing sludge and cattle manure: deeper insights from Py-GC/MS, TG-FTIR, 2D-COS and PCA analyses. Journal of Hazardous Materials 401:123276

doi: 10.1016/j.jhazmat.2020.123276
[10]

Khater ES, Bahnasawy A, Hamouda R, Sabahy A, Abbas W, et al. 2024. Biochar production under different pyrolysis temperatures with different types of agricultural wastes. Scientific Reports 14:2625

doi: 10.1038/s41598-024-52336-5
[11]

He R, Neupane M, Zia A, Huang X, Bowers C, et al. 2022. Binder-free wood converted carbon for enhanced water desalination performance. Advanced Functional Materials 32:2208040

doi: 10.1002/adfm.202208040
[12]

Mašek O, Buss W, Sohi S. 2018. Standard biochar materials. Environmental Science & Technology 52:9543−9544

doi: 10.1021/acs.est.8b04053
[13]

Wang L, Olsen MNP, Moni C, Dieguez-Alonso A, de la Rosa JM, et al. 2022. Comparison of properties of biochar produced from different types of lignocellulosic biomass by slow pyrolysis at 600 °C. Applications in Energy and Combustion Science 12:100090

doi: 10.1016/j.jaecs.2022.100090
[14]

Yang W, Park YK, Lee J. 2025. Biochar catalysts from animal manure: production and application. Energy & Environment 36:2515−2535

doi: 10.1177/0958305X231219787
[15]

Tomczyk A, Sokołowska Z, Boguta P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology 19:191−215

doi: 10.1007/s11157-020-09523-3
[16]

Li L, Long A, Fossum B, Kaiser M. 2023. Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: a meta-analysis. Soil Use and Management 39:43−52

doi: 10.1111/sum.12848
[17]

Murtaza G, Ahmed Z, Usman M. 2022. Feedstock type, pyrolysis temperature and acid modification effects on physiochemical attributes of biochar and soil quality. Arabian Journal of Geosciences 15:305

doi: 10.1007/s12517-022-09539-9
[18]

Song S, Cong P, Wang C, Li P, Liu S, et al. 2023. Properties of biochar obtained from tropical crop wastes under different pyrolysis temperatures and its application on acidic soil. Agronomy 13:921

doi: 10.3390/agronomy13030921
[19]

Handiso B, Pääkkönen T, Wilson BP. 2024. Effect of pyrolysis temperature on the physical and chemical characteristics of pine wood biochar. Waste Management Bulletin 2:281−287

doi: 10.1016/j.wmb.2024.11.008
[20]

Zhang G, Chen Y, Chen Y, Guo H. 2018. Activated biomass carbon made from bamboo as electrode material for supercapacitors. Materials Research Bulletin 102:391−398

doi: 10.1016/j.materresbull.2018.03.006
[21]

Liao W, Zhang X, Ke S, Shao J, Yang H, et al. 2022. Effect of different biomass species and pyrolysis temperatures on heavy metal adsorption, stability and economy of biochar. Industrial Crops and Products 186:115238

doi: 10.1016/j.indcrop.2022.115238
[22]

Liang Q, Pan D, Zhang X. 2023. Construction and application of biochar-based composite phase change materials. Chemical Engineering Journal 453:139441

doi: 10.1016/j.cej.2022.139441
[23]

Zhang W, Liu T, Mou J, Huang J, Liu M. 2020. Ultra-thick electrodes based on activated wood-carbon towards high-performance quasi-solid-state supercapacitors. Physical Chemistry Chemical Physics 22:2073−2080

doi: 10.1039/C9CP06181A
[24]

Pang S, Zhou C, Sun Y, Zhang K, Ye W, et al. 2023. Natural wood-derived charcoal embedded with bimetallic iron/cobalt sites to promote ciprofloxacin degradation. Journal of Cleaner Production 414:137569

doi: 10.1016/j.jclepro.2023.137569
[25]

Zhu C, Du L, Luo J, Tang H, Cui Z, et al. 2018. A renewable wood-derived cathode for Li–O2 batteries. Journal of Materials Chemistry A 6:14291−14298

doi: 10.1039/C8TA04703K
[26]

Yu Y, Li N, Lu X, Yan B, Chen G, et al. 2022. Co/N co-doped carbonized wood sponge with 3D porous framework for efficient peroxymonosulfate activation: performance and internal mechanism. Journal of Hazardous Materials 421:126735

doi: 10.1016/j.jhazmat.2021.126735
[27]

Peng H, Xiong W, Yang Z, Tong J, Jia M, et al. 2023. Fe3O4-supported N-doped carbon channels in wood carbon form etching and carbonization: boosting performance for persulfate activating. Chemical Engineering Journal 457:141317

doi: 10.1016/j.cej.2023.141317
[28]

Hou H, Huo H, Yu Y, Li M, Chen Y, et al. 2024. In situ growth of copper nanoparticles in nitrogen-doped carbonized wood for efficiently enhancing its capacitive performance and electrocatalytic hydrogen evolution. Chemical Engineering Journal 484:149454

doi: 10.1016/j.cej.2024.149454
[29]

Zhang M, Hu B, Fan G, Yang M, Lu Q, et al. 2024. The removal of tar and the production of methane-rich gas from biomass hydrogen pyrolysis by using biochar-based catalysts. Energy Conversion and Management 313:118596

doi: 10.1016/j.enconman.2024.118596
[30]

Supee AH, Zaini MAA. 2024. Phosphoric acid-activated bamboo hydrochar for methylene blue adsorption: isotherm and kinetic studies. Biomass Conversion and Biorefinery 14:8563−8577

doi: 10.1007/s13399-022-03465-2
[31]

Huang X, Li F, Zhang X, Xu S, Liu H, et al. 2025. One-step high-efficiency microwave synthesis of N-doped bamboo biochar for tetracycline degradation. Separation and Purification Technology 354:129003

doi: 10.1016/j.seppur.2024.129003
[32]

Visiy EB, Djousse BMK, Martin L, Zangue CN, Sangodoyin A, et al. 2022. Effectiveness of biochar filters vegetated with Echinochloa pyramidalis in domestic wastewater treatment. Water Science and Technology 85:2613−2624

doi: 10.2166/wst.2022.147
[33]

Fatima B, Bibi F, Ishtiaq Ali M, Woods J, Ahmad M, et al. 2022. Accompanying effects of sewage sludge and pine needle biochar with selected organic additives on the soil and plant variables. Waste Management 153:197−208

doi: 10.1016/j.wasman.2022.08.016
[34]

Maneerung T, Kawi S, Dai Y, Wang CH. 2016. Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Conversion and Management 123:487−497

doi: 10.1016/j.enconman.2016.06.071
[35]

Jung S, Kim M, Jung JM, Kwon EE. 2020. Valorization of swine manure biochar as a catalyst for transesterifying waste cooking oil into biodiesel. Environmental Pollution 266:115377

doi: 10.1016/j.envpol.2020.115377
[36]

Zeng C, Jiang Y, Xu R, Han L, Zhang X. 2022. Phenols-enriched biofuel and H2-rich gas from catalytic fast pyrolysis/gasification of agricultural biomass over a novel heavy metals-containing livestock manure biochar catalyst. Journal of Analytical and Applied Pyrolysis 167:105680

doi: 10.1016/j.jaap.2022.105680
[37]

Wallace CA, Afzal MT, Saha GC. 2019. Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresources and Bioprocessing 6:33

doi: 10.1186/s40643-019-0268-2
[38]

Das O, Sarmah AK, Bhattacharyya D. 2015. Structure–mechanics property relationship of waste derived biochars. Science of The Total Environment 538:611−620

doi: 10.1016/j.scitotenv.2015.08.073
[39]

Sisman M, Teomete E, Yanik J, Malayoglu U. 2024. The effect of nano-biochar produced from various raw materials on flow and mechanical properties of mortar. Construction and Building Materials 416:135040

doi: 10.1016/j.conbuildmat.2024.135040
[40]

Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology 107:419−428

doi: 10.1016/j.biortech.2011.11.084
[41]

Liu Z, Fei B, Jiang Z, Liu XE. 2014. Combustion characteristics of bamboo-biochars. Bioresource Technology 167:94−99

doi: 10.1016/j.biortech.2014.05.023
[42]

Videgain M, Manyà JJ, Vidal M, Correa EC, Diezma B, et al. 2021. Influence of feedstock and final pyrolysis temperature on breaking strength and dust production of wood-derived biochars. Sustainability 13:11871

doi: 10.3390/su132111871
[43]

Crombie K, Mašek O, Sohi SP, Brownsort P, Cross A. 2013. The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5:122−131

doi: 10.1111/gcbb.12030
[44]

Lehmann J, Joseph S. 2012. Biochar for Environmental Management: Science and Technology. London: Routledge. pp. 13−53

[45]

Lian F, Xing B. 2017. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk. Environmental Science & Technology 51:13517−13532

doi: 10.1021/acs.est.7b02528
[46]

Liu Z, Quek A, Hoekman SK, Balasubramanian R. 2013. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943−949

doi: 10.1016/j.fuel.2012.07.069
[47]

Peterson SC, Jackson MA. 2014. Simplifying pyrolysis: using gasification to produce corn stover and wheat straw biochar for sorptive and horticultural media. Industrial Crops and Products 53:228−235

doi: 10.1016/j.indcrop.2013.12.028
[48]

Suliman W, Harsh JB, Abu-Lail NI, Fortuna AM, Dallmeyer I, et al. 2016. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy 84:37−48

doi: 10.1016/j.biombioe.2015.11.010
[49]

Libra JA, Ro KS, Kammann C, Funke A, Berge ND, et al. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71−106

doi: 10.4155/bfs.10.81
[50]

Zickler GA, Schöberl T, Paris O. 2006. Mechanical properties of pyrolysed wood: a nanoindentation study. Philosophical Magazine 86:1373−1386

doi: 10.1080/14786430500431390
[51]

Das O, Sarmah AK, Bhattacharyya D. 2016. Nanoindentation assisted analysis of biochar added biocomposites. Composites Part B: Engineering 91:219−227

doi: 10.1016/j.compositesb.2016.01.057
[52]

Das O, Mensah RA, George G, Jiang L, Xu Q, et al. 2021. Flammability and mechanical properties of biochars made in different pyrolysis reactors. Biomass and Bioenergy 152:106197

doi: 10.1016/j.biombioe.2021.106197
[53]

Mensah RA, Wang D, Shanmugam V, Sas G, Försth M, et al. 2024. Fire behaviour of biochar-based cementitious composites. Composites Part C: Open Access 14:100471

doi: 10.1016/j.jcomc.2024.100471
[54]

Das O, Hedenqvist MS, Johansson E, Olsson RT, Loho TA, et al. 2019. An all-gluten biocomposite: comparisons with carbon black and pine char composites. Composites Part A: Applied Science and Manufacturing 120:42−48

doi: 10.1016/j.compositesa.2019.02.015
[55]

Xu W, Zhang Y, Li M, Qu F, Poon CS, et al. 2024. Durability and micromechanical properties of biochar in biochar-cement composites under marine environment. Journal of Cleaner Production 450:141842

doi: 10.1016/j.jclepro.2024.141842
[56]

Zhang Y, Yan J, Ren Z, Lu C, Xie H. 2025. Molecular dynamics simulation of thermal properties and morphological stability of biochar-based composite phase change materials. International Journal of Heat and Mass Transfer 251:127354

doi: 10.1016/j.ijheatmasstransfer.2025.127354
[57]

Pradeep R, Balavairavan B, Senthamaraikannan P, Kumar R, Parrthipan BK, et al. 2026. Enhancement of the functional properties of vinyl ester composites using alkali-treated Cocos nucifera shell biochar for sustainable applications. Polymer Composites 47:1523−1537

doi: 10.1002/pc.70233
[58]

Zhang Z, Zhao X, Zhang R, Cao J. 2024. Novel phase change materials with superior thermal conductivity and photothermal efficiency derived from preservative-treated wood biochar. Renewable Energy 237:121724

doi: 10.1016/j.renene.2024.121724
[59]

Lv L, Wang J, Ji M, Zhang Y, Huang S, et al. 2022. Effect of structural characteristics and surface functional groups of biochar on thermal properties of different organic phase change materials: Dominant encapsulation mechanisms. Renewable Energy 195:1238−1252

doi: 10.1016/j.renene.2022.06.117
[60]

Liu S, Peng S, Zhang B, Xue B, Yang Z, et al. 2022. Effects of biochar pyrolysis temperature on thermal properties of polyethylene glycol/biochar composites as shape-stable biocomposite phase change materials. RSC Advances 12:9587−9598

doi: 10.1039/D1RA09167K
[61]

Li H, Lin R, Zhang L, Li J, Huang C, et al. 2025. Graphene-integrated bamboo biochar with enhanced anisotropic heat transfer for directional solar-thermal energy storage. Diamond and Related Materials 159:112870

doi: 10.1016/j.diamond.2025.112870
[62]

Yang R, Guo X, Wu H, Kang W, Song K, et al. 2022. Anisotropic hemp-stem-derived biochar supported phase change materials with efficient solar-thermal energy conversion and storage. Biochar 4:38

doi: 10.1007/s42773-022-00162-1
[63]

Usowicz B, Lipiec J, Łukowski M, Marczewski W, Usowicz J. 2016. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil and Tillage Research 164:45−51

doi: 10.1016/j.still.2016.03.009
[64]

Huang D, Wang Y, Song G, Hu S, Li H, et al. 2023. Study on thermal properties of bio-char prepared by photo-thermal pyrolysis. Biomass and Bioenergy 178:106969

doi: 10.1016/j.biombioe.2023.106969
[65]

Hekimoğlu G, Sarı A, Arunachalam S, Arslanoğlu H, Gencel O. 2021. Porous biochar/heptadecane composite phase change material with leak-proof, high thermal energy storage capacity and enhanced thermal conductivity. Powder Technology 394:1017−1025

doi: 10.1016/j.powtec.2021.09.030
[66]

Xiong T, Ok YS, Dissanayake PD, Tsang DCW, Kim S, et al. 2022. Preparation and thermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stem biochar microparticles. Science of The Total Environment 827:154341

doi: 10.1016/j.scitotenv.2022.154341
[67]

Sun M, Feng Y, Di H, Lin L. 2024. Evaluation into the effect of lignocellulosic biochar on the thermal properties of shape stable composite phase change materials. Industrial Crops and Products 222:119961

doi: 10.1016/j.indcrop.2024.119961
[68]

Mensah RA, Shanmugam V, Narayanan S, Razavi N, Ulfberg A, et al. 2021. Biochar-added cementitious materials—a review on mechanical, thermal, and environmental properties. Sustainability 13:9336

doi: 10.3390/su13169336
[69]

Zhao SX, Ta N, Wang XD. 2017. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies 10:1293

doi: 10.3390/en10091293
[70]

Yang H, Yan R, Chen H, Zheng C, Lee DH, et al. 2006. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy & Fuels 20:388−393

doi: 10.1021/ef0580117
[71]

Hawryluk-Sidoruk M, Raczkiewicz M, Krasucka P, Duan W, Mašek O, et al. 2024. Effect of biochar chemical modification (acid, base and hydrogen peroxide) on contaminants content depending on feedstock and pyrolysis conditions. Chemical Engineering Journal 481:148329

doi: 10.1016/j.cej.2023.148329
[72]

Huff MD, Lee JW. 2016. Biochar-surface oxygenation with hydrogen peroxide. Journal of Environmental Management 165:17−21

doi: 10.1016/j.jenvman.2015.08.046
[73]

Dieguez-Alonso A, Funke A, Anca-Couce A, Rombolà AG, Ojeda G, et al. 2018. Towards biochar and hydrochar engineering—influence of process conditions on surface physical and chemical properties, thermal stability, nutrient availability, toxicity and wettability. Energies 11:496

doi: 10.3390/en11030496
[74]

Yang X, Wang H, Strong PJ, Xu S, Liu S, et al. 2017. Thermal properties of biochars derived from waste biomass generated by agricultural and forestry sectors. Energies 10:469

doi: 10.3390/en10040469
[75]

Ronsse F, van Hecke S, Dickinson D, Prins W. 2013. Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5:104−115

doi: 10.1111/gcbb.12018
[76]

Gabhi R, Tan K, Feng T, Kirk DW, Giorcelli M, et al. 2024. Intrinsic electrical conductivity of monolithic biochar. Biomass and Bioenergy 181:107051

doi: 10.1016/j.biombioe.2024.107051
[77]

Gabhi R, Basile L, Kirk DW, Giorcelli M, Tagliaferro A, et al. 2020. Electrical conductivity of wood biochar monoliths and its dependence on pyrolysis temperature. Biochar 2:369−378

doi: 10.1007/s42773-020-00056-0
[78]

Gabhi RS, Kirk DW, Jia CQ. 2017. Preliminary investigation of electrical conductivity of monolithic biochar. Carbon 116:435−442

doi: 10.1016/j.carbon.2017.01.069
[79]

Bartoli M, Troiano M, Giudicianni P, Amato D, Giorcelli M, et al. 2022. Effect of heating rate and feedstock nature on electrical conductivity of biochar and biochar-based composites. Applications in Energy and Combustion Science 12:100089

doi: 10.1016/j.jaecs.2022.100089
[80]

Kane S, Ulrich R, Harrington A, Stadie NP, Ryan C. 2021. Physical and chemical mechanisms that influence the electrical conductivity of lignin-derived biochar. Carbon Trends 5:100088

doi: 10.1016/j.cartre.2021.100088
[81]

Chacón FJ, Cayuela ML, Roig A, Sánchez-Monedero MA. 2017. Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications. Reviews in Environmental Science and Bio/Technology 16:695−715

doi: 10.1007/s11157-017-9450-1
[82]

Miccoli I, Edler F, Pfnür H, Tegenkamp C. 2015. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. Journal of Physics: Condensed Matter 27:223201

doi: 10.1088/0953-8984/27/22/223201
[83]

Wang K, Gong X, Ye X, Li J, Yang Y, et al. 2024. Dielectric gene engineering on biochar for ultrawide-band microwave absorption with a rational double-layer design. Carbon 228:119326

doi: 10.1016/j.carbon.2024.119326
[84]

Ellison C, McKeown MS, Trabelsi S, Boldor D. 2017. Dielectric properties of biomass/biochar mixtures at microwave frequencies. Energies 10:502

doi: 10.3390/en10040502
[85]

Richard S, Rajadurai JS, Manikandan V. 2016. Influence of particle size and particle loading on mechanical and dielectric properties of biochar particulate-reinforced polymer nanocomposites. International Journal of Polymer Analysis and Characterization 21:462−477

doi: 10.1080/1023666X.2016.1168602
[86]

Salema AA, Yeow YK, Ishaque K, Ani FN, Afzal MT, et al. 2013. Dielectric properties and microwave heating of oil palm biomass and biochar. Industrial Crops and Products 50:366−374

doi: 10.1016/j.indcrop.2013.08.007
[87]

Salema AA, Ani FN, Mouris J, Hutcheon R. 2017. Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process. Fuel Processing Technology 166:164−173

doi: 10.1016/j.fuproc.2017.06.006
[88]

Yao H, Xiong Y, Pickles C, Hutcheon R, Pahnila M, et al. 2025. Dielectric properties of biomass by-products generated from wood and agricultural industries in Finland. Bioresource Technology 426:132319

doi: 10.1016/j.biortech.2025.132319
[89]

Fan X, Li B, Zi W, Kang M, Wu H, et al. 2024. Microwave dielectric characterization and loss mechanism of biowaste during pyrolysis. Energy Conversion and Management 301:118075

doi: 10.1016/j.enconman.2024.118075
[90]

Woan K, Pyrgiotakis G, Sigmund W. 2009. Photocatalytic carbon-nanotube–TiO2 composites. Advanced Materials 21:2233−2239

doi: 10.1002/adma.200802738
[91]

Song Y, Zhang H, Zhang Y, Li W, Xuan X, et al. 2024. Influence of crystal structure of polymorphic cotton cellulose on the adsorption and photocatalysis properties of biochar-TiO2 composites. Cellulose 31:9087−9110

doi: 10.1007/s10570-024-06156-5
[92]

Meng L, Yin W, Wang S, Wu X, Hou J, et al. 2020. Photocatalytic behavior of biochar-modified carbon nitride with enriched visible-light reactivity. Chemosphere 239:124713

doi: 10.1016/j.chemosphere.2019.124713
[93]

Lu L, Shan R, Shi Y, Wang S, Yuan H. 2019. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere 222:391−398

doi: 10.1016/j.chemosphere.2019.01.132
[94]

Fazal T, Razzaq A, Javed F, Hafeez A, Rashid N, et al. 2020. Integrating adsorption and photocatalysis: a cost effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite. Journal of Hazardous Materials 390:121623

doi: 10.1016/j.jhazmat.2019.121623
[95]

Atta MM, Henaish AMA, Elbasiony AM, Taha EO, Dorgham AM. 2022. Structural, optical, and thermal properties of PEO/PVP blend reinforced biochar. Optical Materials 127:112268

doi: 10.1016/j.optmat.2022.112268
[96]

Hu H. 2022. Preparation of N-doped TiO2/biochar composite catalysts and its application for photoelectrochemical degradation of cephalosporin antibiotics. International Journal of Electrochemical Science 17:220330

doi: 10.20964/2022.03.28
[97]

Zhang Z, Wang G, Li W, Zhang L, Guo B, et al. 2021. Photocatalytic activity of magnetic nano-β-FeOOH/Fe3O4/biochar composites for the enhanced degradation of methyl orange under visible light. Nanomaterials 11:526

doi: 10.3390/nano11020526
[98]

Xue Q, Lin H, Feng Q, Yang Y, Dong M, et al. 2025. Synergistic photocatalysis and fenton-like process driven by a biochar-supported biochar/iron hydroxide oxide/bismuth molybdate S-type heterojunction for tetracycline degradation: Mechanistic insights and degradation pathways. Applied Surface Science 679:161277

doi: 10.1016/j.apsusc.2024.161277
[99]

Nava K, González K, Castrejón V, Vigueras E, Reyes J, et al. 2025. From peels and coffee grounds to tunable carbon nanodots: waste-derived biocarbon meets ultrafast laser ablation. Nanoscale Advances 7:7620−7637

doi: 10.1039/D5NA00560D
[100]

Daoudi W, el Mahamdi M, Dagdag O, Wan Nik WB, Oussaid A, et al. 2024. Carbon dots: recent developments and future perspectives. Washington, DC: American Chemical Society. pp. 81−101 doi: 10.1021/bk-2024-1465.ch004

[101]

Marpongahtun M, Safhura TS, Siregar AH. 2025. Exploring the effect of ethylenediamine concentration on the optical properties of carbon dots synthesized from candlenut shell biomass. Journal of Chemical Natural Resources 7:20−29

doi: 10.32734/jcnar.v7i1.20639
[102]

Wang Y, Li J, Xu L, Xu Q, Wu D, et al. 2023. The effect and spectral response mechanism of dissolved organic matter (DOM) in Pb(II) adsorption onto biochar. Journal of Environmental Chemical Engineering 11:111115

doi: 10.1016/j.jece.2023.111115
[103]

Jamaludin N, Tan TL, Zaman ASK, Sadrolhosseini AR, Rashid SA. 2020. Acid-free hydrothermal-extraction and molecular structure of carbon quantum dots derived from empty fruit bunch biochar. Materials 13:3356

doi: 10.3390/ma13153356
[104]

Plácido J, Bustamante-López S, Meissner KE, Kelly DE, Kelly SL. 2019. Comparative study of the characteristics and fluorescent properties of three different biochar derived-carbonaceous nanomaterials for bioimaging and heavy metal ions sensing. Fuel Processing Technology 196:106163

doi: 10.1016/j.fuproc.2019.106163
[105]

Huang M, Liao Z, Li Z, Wen J, Zhao L, et al. 2022. Effects of pyrolysis temperature on proton and cadmium binding properties onto biochar-derived dissolved organic matter: Roles of fluorophore and chromophore. Chemosphere 299:134313

doi: 10.1016/j.chemosphere.2022.134313
[106]

Chen J, Zhang M, Xu Z, Ma R, Shi Q. 2023. Machine-learning analysis to predict the fluorescence quantum yield of carbon quantum dots in biochar. Science of The Total Environment 896:165136

doi: 10.1016/j.scitotenv.2023.165136
[107]

Wang M, Liu J, Peng L, Tian S, Yang C, et al. 2021. Estimation of the biogeochemical reactivities of dissolved organic matter from modified biochars using color. Science of The Total Environment 790:147974

doi: 10.1016/j.scitotenv.2021.147974
[108]

Zhang S, Mao Y, Wei L, Song Z, Zhao X, et al. 2023. Full-value preparation of biochar and 2D N-doped CDs@ZIF-L from fermentation residues for sensitive sensing tetracyclines in food samples. Colloids and Surfaces A: Physicochemical and Engineering Aspects 676:132073

doi: 10.1016/j.colsurfa.2023.132073
[109]

Saad AG, Gebreil A, Kospa DA, El-Hakam SA, Ibrahim AA. 2022. Integrated solar seawater desalination and power generation via plasmonic sawdust-derived biochar: waste to wealth. Desalination 535:115824

doi: 10.1016/j.desal.2022.115824
[110]

Zhang Y, Watanabe H, Shi J, Morikawa H, Zhu C. 2024. Innovative mushroom-like hemp-based evaporators enhanced by biochar for efficient seawater desalination. Desalination 576:117342

doi: 10.1016/j.desal.2024.117342
[111]

Zhang Q, Ye Q, Zhang Y, Cai Q, Dang Y, et al. 2022. High efficiency solar interfacial evaporator for seawater desalination based on high porosity loofah sponge biochar. Solar Energy 238:305−314

doi: 10.1016/j.solener.2022.04.044
[112]

Wilson HM, Hossain MN, Raheman SAR, Lee SJ. 2025. All-day desalination and ZLD-oriented brine production using a grass biomass pellet-derived biochar–carbon fabric evaporator. Chemical Engineering Journal 519:165432

doi: 10.1016/j.cej.2025.165432
[113]

Salahaldeen NA, Özbek N, Ocak ÜT, Ocak M. 2025. Eco-friendly spectrofluorimetric determination of Hg2+ using green-synthesized carbon nanodots from apricot kernel shells. Turkish Journal of Analytical Chemistry 7:228−236

doi: 10.51435/turkjac.1658256
[114]

Guo J, Xu J, Liu X, Dai L, Zhang C, et al. 2022. Enabling dual valorization of lignocellulose by fluorescent lignin carbon dots and biochar-supported persulfate activation: towards waste-treats-pollutant. Journal of Hazardous Materials 435:129072

doi: 10.1016/j.jhazmat.2022.129072
[115]

Zhuo Q, Liang Y, Hu Y, Shi M, Zhao C, et al. 2023. Applications of biochar in medical and related environmental fields: current status and future perspectives. Carbon Research 2:32

doi: 10.1007/s44246-023-00066-0
[116]

Gaurav A, Jain A, Tripathi SK. 2022. Review on fluorescent carbon/graphene quantum dots: promising material for energy storage and next-generation light-emitting diodes. Materials 15:7888

doi: 10.3390/ma15227888
[117]

Polzella A, Terzaghi M, Trupiano D, Baronti S, Scippa GS, et al. 2020. Morpho-physiological responses of Pisum sativum L. to different light-emitting diode (LED) light spectra in combination with biochar amendment. Agronomy 10:398

doi: 10.3390/agronomy10030398
[118]

Ma G, Cai J, Wang X. 2025. Xylan-derived carbon dots with tunable fluorescence for white light emitting diodes. ACS Sustainable Chemistry & Engineering 13:2720−2731

doi: 10.1021/acssuschemeng.4c07839