[1]

Zhao X, Wang X, He J, Feng C, Jin X, et al. 2025. Time to strengthen the governance of new contaminants in the environment. Nature Communications 16:7775

doi: 10.1038/s41467-025-63217-4
[2]

Zhang X, Li L, Xie Z, Ma J, Li YF, et al. 2024. Exploring global oceanic persistence and ecological effects of legacy persistent organic pollutants across five decades. Science Advances 10:5534

doi: 10.1126/sciadv.ado5534
[3]

Gan J. 2025. Risk avoidance as a practical solution to safeguard against emerging contaminants. Nature Water 3(12):1334−1335

doi: 10.1038/s44221-025-00543-3
[4]

Cui HL, Gao SH, Wang HC, Zhang LY, Luo Y, et al. 2025. Big data integration for environmental risk assessment of emerging contaminants. Nature Sustainability

doi: 10.1038/s41893-025-01718-2
[5]

Evich MG, Davis MJB, McCord JP, Acrey B, Awkerman JA, et al. 2022. Per- and polyfluoroalkyl substances in the environment. Science 375:eabg9065

doi: 10.1126/science.abg9065
[6]

Yang L, Chen Z, Goult CA, Schlatzer T, Paton RS, et al. 2025. Phosphate-enabled mechanochemical PFAS destruction for fluoride reuse. Nature 640:100−106

doi: 10.1038/s41586-025-08698-5
[7]

Zhang H, Chen JX, Qu JP, Kang YB. 2024. Photocatalytic low-temperature defluorination of PFASs. Nature 635:610−617

doi: 10.1038/s41586-024-08179-1
[8]

Thompson RC, Courtene-Jones W, Boucher J, Pahl S, Raubenheimer K, et al. 2024. Twenty years of microplastic pollution research—what have we learned? Science 386:eadl2746

doi: 10.1126/science.adl2746
[9]

Rathi BS, Kumar PS, Show PL. 2021. A review on effective removal of emerging contaminants from aquatic systems: current trends and scope for further research. Journal of Hazardous Materials 409:124413

doi: 10.1016/j.jhazmat.2020.124413
[10]

Ateia M, Wei H, Andreescu S. 2024. Sensors for emerging water contaminants: overcoming roadblocks to innovation. Environmental Science & Technology 58:2636−2651

doi: 10.1021/acs.est.3c09889
[11]

Carter L, Davis C. 2025. Emerging contaminants in agricultural systems. Nature Reviews Earth & Environment 6:320

doi: 10.1038/s43017-025-00674-x
[12]

Taibl KR, Dunlop AL, Barr DB, Li YY, Eick SM, et al. 2023. Newborn metabolomic signatures of maternal per- and polyfluoroalkyl substance exposure and reduced length of gestation. Nature Communications 14:3120

doi: 10.1038/s41467-023-38710-3
[13]

Guan Y, Liu Z, Yang N, Yang S, Quispe-Cardenas LE, et al. 2024. Near-complete destruction of PFAS in aqueous film-forming foam by integrated photo-electrochemical processes. Nature Water 2:443−452

doi: 10.1038/s44221-024-00232-7
[14]

Ames JL, Sharma V, Lyall K. 2025. Effects of early-life PFAS exposure on child neurodevelopment: a review of the evidence and research gaps. Current Environmental Health Reports 12:9

doi: 10.1007/s40572-024-00464-5
[15]

Huang H, Hou J, Li M, Wei F, Liao Y, et al. 2025. Microplastics in the bloodstream can induce cerebral thrombosis by causing cell obstruction and lead to neurobehavioral abnormalities. Science Advances 11:eadr8243

doi: 10.1126/sciadv.adr8243
[16]

Wang Y, Xiang L, Amelung W, Elsner M, Gan J, et al. 2023. Micro- and nanoplastics in soil ecosystems: analytical methods, fate, and effects. TrAC Trends in Analytical Chemistry 169:117309

doi: 10.1016/j.trac.2023.117309
[17]

Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, et al. 2024. Emerging contaminants: a one health perspective. The Innovation 5(4):100612

doi: 10.1016/j.xinn.2024.100612
[18]

Yasunari TJ, Stohl A, Hayano RS, Burkhart JF, Eckhardt S, et al. 2011. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences of the United States of America 108:19530−19534

doi: 10.1073/pnas.1112058108
[19]

Liu G, Jin W, Xu N. 2015. Graphene-based membranes. Chemical Society Reviews 44:5016−5030

doi: 10.1039/c4cs00423j
[20]

Chen L, Shi G, Shen J, Peng B, Zhang B, et al. 2017. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550:415−418

doi: 10.1038/nature24044
[21]

Chen J, Liu X, Ding Z, He Z, Jiang H, et al. 2023. Multistage filtration desalination via ion self-rejection effect in cation-controlled graphene oxide membrane under 1 bar operating pressure. Nano Letters 23:10884−10891

doi: 10.1021/acs.nanolett.3c03105
[22]

Chen J, Li J, Liu X, He Z, Shi G. 2023. An anomalous anion transfer order in graphene oxide membranes induced by anion-π interactions. Physical Chemistry Chemical Physics 25:13260−13264

doi: 10.1039/d3cp00986f
[23]

Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, et al. 2014. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343:752−754

doi: 10.1126/science.1245711
[24]

Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, et al. 2008. Impermeable atomic membranes from graphene sheets. Nano Letters 8:2458−2462

doi: 10.1021/nl801457b
[25]

Zhao S, Zhu H, Wang H, Rassu P, Wang Z, et al. 2019. Free-standing graphene oxide membrane with tunable channels for efficient water pollution control. Journal of Hazardous Materials 366:659−668

doi: 10.1016/j.jhazmat.2018.12.055
[26]

Liu J, Wang S, Yang R, Li L, Liang S, et al. 2022. Bio-inspired graphene oxide-amino acid cross-linked framework membrane trigger high water permeance and high metal ions rejection. Journal of Membrane Science 659:120745

doi: 10.1016/j.memsci.2022.120745
[27]

Dai F, Zhou F, Chen J, Liang S, Chen L, et al. 2021. Ultrahigh water permeation with a high multivalent metal ion rejection rate through graphene oxide membranes. Journal of Materials Chemistry A 9:10672−10677

doi: 10.1039/d1ta00647a
[28]

Yi R, Xia X, Yang R, Yu R, Dai F, et al. 2021. Selective reduction of epoxy groups in graphene oxide membrane for ultrahigh water permeation. Carbon 172:228−235

doi: 10.1016/j.carbon.2020.09.076
[29]

Dai F, Gu Z, Hu S, Peng B, Yang R, et al. 2024. Unexpected self-assembly of nanographene oxide membranes upon electron beam irradiation for ultrafast ion sieving. Advanced Science 11:2404001

doi: 10.1002/advs.202404001
[30]

Yan L, Chen J, Zhang Z, Liu Z, Ding T, et al. 2025. Reduced graphene oxide membrane with small nanosheets for efficient and ultrafast removal of both microplastics and small molecules. Journal of Hazardous Materials 487:137078

doi: 10.1016/j.jhazmat.2024.137078
[31]

Mahofa E, El Meragawi S, Vilayatteri MA, Dwivedi S, Panda MR, et al. 2025. Manipulating intrapore energy barriers in graphene oxide nanochannels for targeted removal of short-chain PFAS. ACS Nano 19:14724−14755

doi: 10.1021/acsnano.4c15413
[32]

Jian L, Qiu Y, Zhang Z, Feng A, Shi G, et al. 2025. Reduced graphene oxide membrane with wrinkled surfaces for ultrafast and stable microplastics removal. Journal of Environmental Chemical Engineering 13:120454

doi: 10.1016/j.jece.2025.120454
[33]

Sun J, Xiong Y, Jia H, Han L, Yin K. 2024. Superb microplastics separation performance of graphene oxide tuned by laser bombardment. Journal of Hazardous Materials 461:132599

doi: 10.1016/j.jhazmat.2023.132599
[34]

Kuang B, Xiang X, Su P, Yang W, Li W. 2022. Self-assembly of stable and high-performance molecular cage-crosslinked graphene oxide membranes for contaminant removal. Journal of Hazardous Materials 439:129708

doi: 10.1016/j.jhazmat.2022.129708
[35]

Abebe SH, Subrahmanya TM, Austria HFM, Nayak S, Huang TH, et al. 2024. High performance lamellar structured graphene oxide nanocomposite membranes via Fe3O4-coordinated phytic acid control of interlayer spacing for organic solvent nanofiltration (OSN). Chemical Engineering Journal 495:153451

doi: 10.1016/j.cej.2024.153451
[36]

Abebe SH, Mulawarman RI, Cayron RH, Nayak S, Subrahmanya TM, et al. 2025. Zwitterionic M-PhA modified GO nanocomposite membranes for enhanced organic solvent nanofiltration and wastewater treatment with antifouling performance. Journal of Membrane Science 736:124596

doi: 10.1016/j.memsci.2025.124596
[37]

Zhou F, Xia X, Wei Y, Sun H, Yao H, et al. 2024. Rapid and efficient separation of radioactive cesium ion/other radioactive ions by reduced graphene oxide membrane. Journal of Environmental Chemical Engineering 12:114284

doi: 10.1016/j.jece.2024.114284
[38]

Huang Y, Chen J, Liu H, Wang Y, Lu M, et al. 2024. Crown ether intercalated graphene oxide membranes for highly efficient sieving of cesium with a large water permeability. Separation and Purification Technology 339:126702

doi: 10.1016/j.seppur.2024.126702
[39]

Zhang G, Fu R, Li Y, Wang X, Niu Z, et al. 2025. Super-large flux submicron porous membrane for removal of metal ions from low-level radioactive wastewater. Chemical Engineering Journal 504:159154

doi: 10.1016/j.cej.2024.159154
[40]

Lozada-Hidalgo M, Hu S, Marshall O, Mishchenko A, Grigorenko A, et al. 2016. Sieving hydrogen isotopes through two-dimensional crystals. Science 351:68−70

doi: 10.1126/science.aac9726
[41]

Lozada-Hidalgo M, Zhang S, Hu S, Esfandiar A, Grigorieva IV, et al. 2017. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping. Nature Communications 8:15215

doi: 10.1038/ncomms15215
[42]

Mohammadi A, Daymond MR, Docoslis A. 2020. Graphene oxide membranes for isotopic water mixture filtration: preparation, physicochemical characterization, and performance assessment. ACS Applied Materials & Interfaces 12:34736−34745

doi: 10.1021/acsami.0c04122
[43]

Su P, Zhou M, Lu X, Yang W, Ren G, et al. 2019. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant. Applied Catalysis B: Environmental 245:583−595

doi: 10.1016/j.apcatb.2018.12.075
[44]

Wan Z, Wang J. 2017. Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst. Journal of Hazardous Materials 324:653−664

doi: 10.1016/j.jhazmat.2016.11.039
[45]

Jiang WL, Xia X, Han JL, Ding YC, Haider MR, et al. 2018. Graphene modified electro-Fenton catalytic membrane for in situ degradation of antibiotic florfenicol. Environmental Science & Technology 52:99772−99982

doi: 10.1021/acs.est.8b01894
[46]

Zhang Z, He Z, Li K, Liu J, Liu X, et al. 2025. Organic molecules induce the formation of hopper-like NaCl crystals under rapid evaporation as microcatalytic reactors to facilitate micro/nanoplastic degradation. Nano Letters 25:2334−2341

doi: 10.1021/acs.nanolett.4c05632
[47]

Yue D, Zeng T, Li Y, Lin J, Xiao J, et al. 2025. T-shaped Fe-based multistoichiometry stereoscopic composite catalyst with ultrahigh activity toward Fenton-like water treatment, synthesized via graphene-controlled growth. Physical Review Letters 135:038001

doi: 10.1103/vdxk-lvnt
[48]

Zhu M, Lin J, Yuan M, Li Y, Cheng N, et al. 2025. Atomically dispersed FeOx species functionalized Fe2O3 nano-island clusters toward efficient Fenton-like catalysis. Advanced Functional Materials 36(5):e14460

doi: 10.1002/adfm.202514460
[49]

Nisar A, Saeed M, Muneer M, Usman M, Khan I. 2022. Synthesis and characterization of ZnO decorated reduced graphene oxide (ZnO-rGO) and evaluation of its photocatalytic activity toward photodegradation of methylene blue. Environmental Science and Pollution Research 29:418−430

doi: 10.1007/s11356-021-13520-6
[50]

Liu X, Sau A, Green AR, Popescu MV, Pompetti NF, et al. 2025. Photocatalytic C–F bond activation in small molecules and polyfluoroalkyl substances. Nature 637:601−607

doi: 10.1038/s41586-024-08327-7
[51]

Duinslaeger N, Radjenovic J. 2022. Electrochemical degradation of per- and polyfluoroalkyl substances (PFAS) using low-cost graphene sponge electrodes. Water Research 213:118148

doi: 10.1016/j.watres.2022.118148
[52]

Gomez-Ruiz B, Ribao P, Diban N, Rivero MJ, Ortiz I, et al. 2018. Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2-rGO catalyst. Journal of Hazardous Materials 344:950−957

doi: 10.1016/j.jhazmat.2017.11.048
[53]

Ibrahim N, Rahman AMNAA, Shafiq MD, Lockman Z, Jaafar M, et al. 2025. Microplastic pollution: sources, degradation mechanisms, analytical advances, and mitigation strategies for environmental sustainability. Reviews of Environmental Contamination and Toxicology 263:27

doi: 10.1007/s44169-025-00098-0
[54]

Gong Z, Wang J, Wu X, Shao S, Fan B, et al. 2023. Interactions between graphene oxide and polyester microplastics changed their phototransformation process and potential environmental risks: mechanism insights. Separation and Purification Technology 307:122769

doi: 10.1016/j.seppur.2022.122769
[55]

Li Y, Che N, Liu N, Li C. 2023. Degradation of perfluorooctanoic acid (PFOA) using multiphase Fenton-like technology by reduced graphene oxide aerogel (rGAs) combined with BDD electrooxidation. Chemical Engineering Journal 478:147443

doi: 10.1016/j.cej.2023.147443
[56]

Dong C, Chen Y, Yang C, Li P, Zhang Y, et al. 2024. Pinning-effect single-atom NiCo alloy embedded graphene-aerogel in electro-Fenton process for rapid degradation of emerging contaminants. Applied Catalysis B: Environment and Energy 357:124286

doi: 10.1016/j.apcatb.2024.124286
[57]

Zhang W, Zhang S, Meng C, Zhang Z. 2023. Nanoconfined catalytic membranes assembled by cobalt-functionalized graphitic carbon nitride nanosheets for rapid degradation of pollutants. Applied Catalysis B - Environment and Energy 322:122098

doi: 10.1016/j.apcatb.2022.122098
[58]

Norsham INM, Sambasevam KP, Shahabuddin S, Jawad AH, Baharin SNA. 2022. Photocatalytic degradation of perfluorooctanoic acid (PFOA) via MoS2/rGO for water purification using indoor fluorescent irradiation. Journal of Environmental Chemical Engineering 10:108466

doi: 10.1016/j.jece.2022.108466
[59]

Duinslaeger N, Doni A, Radjenovic J. 2023. Impact of supporting electrolyte on electrochemical performance of borophene-functionalized graphene sponge anode and degradation of per- and polyfluoroalkyl substances (PFAS). Water Research 242:120232

doi: 10.1016/j.watres.2023.120232
[60]

Zamani A, Tadjarodi A. 2024. Development and fabrication of graphene oxide and reduced graphene oxide incorporated MnFe2O4@Bi2WO6 nanocomposite for efficient degradation of antibiotic drug as water contaminant under visible-light illumination. Ceramics International 50:53456−53481

doi: 10.1016/j.ceramint.2024.10.196
[61]

Alkharabsheh S, McMichael S, Singhal A, Rioja-Cabanillas A, Zamora P, et al. 2024. Bench-scale photoelectrocatalytic reactor utilizing rGO-TiO2 photoanodes for the degradation of contaminants of emerging concern in water. Process Safety and Environmental Protection 182:833−844

doi: 10.1016/j.psep.2023.12.009
[62]

Zhou J, Sun Q, Wang X, Liu Y, Xia S, et al. 2024. High performance of reduced graphene oxide and g-C3N4 Co-doped CuFe2O4 for peroxymonosulfate activation under visible light: degradation process of sulfamethazine via a singlet oxygen dominated pathway. Chemical Engineering Journal 485:149571

doi: 10.1016/j.cej.2024.149571
[63]

Kasalica K, Stojadinović S, Lješević M, Ivanov P, Yamamoto A, et al. 2025. Photocatalytic degradation of PFOA over rGO-doped TiO2 coatings formed by plasma electrolytic oxidation. Journal of Environmental Chemical Engineering 13:117452

doi: 10.1016/j.jece.2025.117452
[64]

Budiarso IJ, Dabur VA, Rachmantyo R, Judawisastra H, Hu C, et al. 2024. Carbon nitride- and graphene-based materials for the photocatalytic degradation of emerging water pollutants. Materials Advances 5:2668−2688

doi: 10.1039/d3ma01078c
[65]

Sura A, Nain S. 2024. Visible light driven degradation of BPA and LDPE microplastic films using GO/SCN nanocomposite. RSC Advances 14:35336−35347

doi: 10.1039/d4ra06055e
[66]

Moharrami E, Keshipour S. 2025. Photocatalytic degradation of tetracycline antibiotic using nitrogen-doped reduced graphene oxide-supported titania/platinum nanoparticles. npj Materials Degradation 9:57

doi: 10.1038/s41529-025-00607-5
[67]

Moreira R, B. Esfahani E, A. Zeidabadi F, Rostami P, Thuo M, et al. 2024. Hybrid graphenic and iron oxide photocatalysts for the decomposition of synthetic chemicals. Communications Engineering 3:114

doi: 10.1038/s44172-024-00267-4