[1]

Ding Y, Shi Y, Yang S. 2024. Regulatory networks underlying plant responses and adaptation to cold stress. Annual Review of Genetics 58:43−65

doi: 10.1146/annurev-genet-111523-102226
[2]

Eremina M, Rozhon W, Poppenberger B. 2016. Hormonal control of cold stress responses in plants. Cellular and Molecular Life Sciences 73:797−810

doi: 10.1007/s00018-015-2089-6
[3]

Kidokoro S, Shinozaki K, Yamaguchi-Shinozaki K. 2022. Transcriptional regulatory network of plant cold-stress responses. Trends in Plant Science 27:922−935

doi: 10.1016/j.tplants.2022.01.008
[4]

Zhang X, Cao X, Xia Y, Ban Q, Cao L, et al. 2022. CsCBF5 depletion impairs cold tolerance in tea plants. Plant Science 325:111463

doi: 10.1016/j.plantsci.2022.111463
[5]

Xia H, Chen M, Ren P, Sun T, Zhao D, et al. 2024. Heterologous expression of the TaCBF2 gene improves cold resistance in Begonia semperflorens. Plant Cell, Tissue and Organ Culture (PCTOC) 159:71

doi: 10.1007/s11240-024-02930-2
[6]

Guo J, Beemster GTS, Liu F, Wang Z, Li X. 2023. Abscisic acid regulates carbohydrate metabolism, redox homeostasis and hormonal regulation to enhance cold tolerance in spring barley. International Journal of Molecular Sciences 24:11348

doi: 10.3390/ijms241411348
[7]

Hwarari D, Guan Y, Ahmad B, Movahedi A, Min T, et al. 2022. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress. International Journal of Molecular Sciences 23:1549

doi: 10.3390/ijms23031549
[8]

He C, Teixeira da Silva JA, Wang H, Si C, Zhang M, et al. 2019. Mining MYB transcription factors from the genomes of orchids (Phalaenopsis and Dendrobium) and characterization of an orchid R2R3-MYB gene involved in water-soluble polysaccharide biosynthesis. Scientific Reports 9:13818

doi: 10.1038/s41598-019-49812-8
[9]

Wang X, Niu Y, Zheng Y. 2021. Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences 22:6125

doi: 10.3390/ijms22116125
[10]

Li X, Lu J, Zhu X, Dong Y, Liu Y, et al. 2023. AtMYBS1 negatively regulates heat tolerance by directly repressing the expression of MAX1 required for strigolactone biosynthesis in Arabidopsis. Plant Communications 4:100675

doi: 10.1016/j.xplc.2023.100675
[11]

Zhou L, Li R, Yang X, Peng Y, Wang Y, et al. 2025. Interaction of R2R3-MYB transcription factor EgMYB111 with ABA receptors enhances cold tolerance in oil palm. International Journal of Biological Macromolecules 305:141223

doi: 10.1016/j.ijbiomac.2025.141223
[12]

Zhang L, Song J, Lin R, Tang M, Shao S, et al. 2022. Tomato SlMYB15 transcription factor targeted by sly-miR156e-3p positively regulates ABA-mediated cold tolerance. Journal of Experimental Botany 73:7538−7551

doi: 10.1093/jxb/erac370
[13]

Wang Y, Li S, Shi Y, Lv S, Zhu C, et al. 2024. The R2R3 MYB Ruby1 is activated by two cold responsive ethylene response factors, via the retrotransposon in its promoter, to positively regulate anthocyanin biosynthesis in citrus. The Plant Journal 119:1433−1448

doi: 10.1111/tpj.16866
[14]

An JP, Wang XF, Zhang XW, Xu HF, Bi SQ, et al. 2020. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. Plant Biotechnology Journal 18:337−353

doi: 10.1111/pbi.13201
[15]

Yang G, Li L, Wei M, Li J, Yang F. 2022. SmMYB113 is a key transcription factor responsible for compositional variation of anthocyanin and color diversity among eggplant peels. Frontiers in Plant Science 13:843996

doi: 10.3389/fpls.2022.843996
[16]

Zhou L, He Y, Li J, Liu Y, Chen H. 2020. CBFs function in anthocyanin biosynthesis by interacting with MYB113 in eggplant (Solanum melongena L.). Plant and Cell Physiology 61:416−426

doi: 10.1093/pcp/pcz209
[17]

Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS. 2018. Mechanism of stomatal closure in plants exposed to drought and cold stress. In Survival Strategies in Extreme Cold and Desiccation: Advances in Experimental Medicine and Biology, eds. Iwaya-Inoue M, Sakurai M, Uemura M. Singapore: Springer. pp. 215−232 doi: 10.1007/978-981-13-1244-1_12

[18]

Hsu PK, Dubeaux G, Takahashi Y, Schroeder JI. 2021. Signaling mechanisms in abscisic acid-mediated stomatal closure. The Plant Journal 105:307−321

doi: 10.1111/tpj.15067
[19]

Huang S, Wang C, Ding Z, Zhao Y, Dai J, et al. 2024. A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity. Nature Communications 15:3205

doi: 10.1038/s41467-024-47364-8
[20]

Shrestha A, Cudjoe DK, Kamruzzaman M, Siddique S, Fiorani F, et al. 2021. Abscisic acid-responsive element binding transcription factors contribute to proline synthesis and stress adaptation in Arabidopsis. Journal of Plant Physiology 261:153414

doi: 10.1016/j.jplph.2021.153414
[21]

Ding F, Wang X, Li Z, Wang M. 2023. Jasmonate positively regulates cold tolerance by promoting ABA biosynthesis in tomato. Plants 12:60

doi: 10.3390/plants12010060
[22]

Hu C, Wang M, Zhu C, Wu S, Li J, et al. 2024. A transcriptional regulation of ERF15 contributes to ABA-mediated cold tolerance in tomato. Plant, Cell & Environment 47:1334−1347

doi: 10.1111/pce.14816
[23]

Ding Y, Li H, Zhang X, Xie Q, Gong Z, et al. 2015. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Developmental Cell 32:278−289

doi: 10.1016/j.devcel.2014.12.023
[24]

Liu Y, Dang P, Liu L, He C. 2019. Cold acclimation by the CBF–COR pathway in a changing climate: lessons from Arabidopsis thaliana. Plant Cell Reports 38:511−519

doi: 10.1007/s00299-019-02376-3
[25]

Zarka DG, Vogel JT, Cook D, Thomashow MF. 2003. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiology 133:910−918

doi: 10.1104/pp.103.027169
[26]

Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, et al. 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development 17:1043−1054

doi: 10.1101/gad.1077503
[27]

Tang K, Zhao L, Ren Y, Yang S, Zhu JK, et al. 2020. The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes. Journal of Integrative Plant Biology 62:258−263

doi: 10.1111/jipb.12918
[28]

Chen L, Chen Y, Zhang H, Shen Y, Cui Y, et al. 2024. ERF54 regulates cold tolerance in Rosa multiflora through DREB/COR signalling pathways. Plant, Cell & Environment 47:1185−1206

doi: 10.1111/pce.14796
[29]

Góth L. 1991. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta 196:143−151

doi: 10.1016/0009-8981(91)90067-M
[30]

Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22:867−880

doi: 10.1093/oxfordjournals.pcp.a076232
[31]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402−408

doi: 10.1006/meth.2001.1262
[32]

Li J, Jiang S, Yang G, Xu Y, Li L, et al. 2023. RNA-sequencing analysis reveals novel genes involved in the different peel color formation in eggplant. Horticulture Research 10:uhad181

doi: 10.1093/hr/uhad181
[33]

Zhang Q, Zhai J, Shao L, Lin W, Peng C. 2019. Accumulation of anthocyanins: an adaptation strategy of Mikania micrantha to low temperature in winter. Frontiers in Plant Science 10:1049

doi: 10.3389/fpls.2019.01049
[34]

Naing AH, Park KI, Ai TN, Chung MY, Han JS, et al. 2017. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance. BMC Plant Biology 17:65

doi: 10.1186/s12870-017-1015-5
[35]

Hong JH, Seah SW, Xu J. 2013. The root of ABA action in environmental stress response. Plant Cell Reports 32:971−983

doi: 10.1007/s00299-013-1439-9
[36]

Ye N, Jia L, Zhang J. 2012. ABA signal in rice under stress conditions. Rice 5:1

doi: 10.1186/1939-8433-5-1
[37]

Sharma KD, Nayyar H. 2016. Regulatory networks in pollen development under cold stress. Frontiers in Plant Science 7:402

doi: 10.3389/fpls.2016.00402
[38]

Habibpourmehraban F, Masoomi-Aladizgeh F, Haynes PA. 2023. Effect of ABA pre-treatment on rice plant transcriptome response to multiple abiotic stress. Biomolecules 13:1554

doi: 10.3390/biom13101554
[39]

Wei Y, Liu W, Hu W, Yan Y, Shi H. 2020. The chaperone MeHSP90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava. New Phytologist 226:476−491

doi: 10.1111/nph.16346
[40]

Suzuki M, Ketterling MG, McCarty DR. 2005. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis. Plant Physiology 139:437−447

doi: 10.1104/pp.104.058412
[41]

Barrero JM, Piqueras P, González-Guzmán M, Serrano R, Rodríguez PL, et al. 2005. A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. Journal of Experimental Botany 56:2071−2083

doi: 10.1093/jxb/eri206
[42]

Agarwal PK, Agarwal P, Reddy MK, Sopory SK. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports 25:1263−1274

doi: 10.1007/s00299-006-0204-8
[43]

Fursova OV, Pogorelko GV, Tarasov VA. 2009. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429:98−103

doi: 10.1016/j.gene.2008.10.016
[44]

Cao MJ, Zhang YL, Liu X, Huang H, Zhou XE, et al. 2017. Combining chemical and genetic approaches to increase drought resistance in plants. Nature Communications 8:1183

doi: 10.1038/s41467-017-01239-3