[1]

Wang C, Ding W, Chen F, Zhang K, Hou Y, et al. 2024. Mapping and transcriptomic profiling reveal that the KNAT6 gene is involved in the dark green peel colour of mature pumpkin fruit (Cucurbita maxima L.). Theoretical and Applied Genetics 137:225

doi: 10.1007/s00122-024-04741-7
[2]

Duan Y, Xiang CG, Liu XY, Ma W, Sun TZ, et al. 2017. Effect of rind structure and pigment composition on rind color in Cucurbita maxima. China Vegetables 11:33−39 (in Chinese)

doi: 10.19928/j.cnki.1000-6346.2017.11.007
[3]

Ma HL, Zhi HY, Yue Q. 2020. Interspecific transference and genetic analysis of the trait of yellow skin in Cucurbita L. Journal of Plant Genetic Resources 21:930−937 (in Chinese)

doi: 10.13430/j.cnki.jpgr.20191027001
[4]

Wang ZX, Yu YF, Chen L, Qin HY, Fan ST. 2016. Advances in leaf pigment composition, structure and photosynthetic characteristics of colored-leaf plants. Plant Physiology Journal 52:1−7 (in Chinese)

doi: 10.13592/j.cnki.ppj.2015.0490
[5]

Lv LL, Li LY, Pi JH. 2025. Carotenoid metabolomic and transcriptomic analyses provide insights into the flower color transition in Lonicera macranthoides. BMC Biotechnology 25:69

doi: 10.1186/s12896-024-00942-6
[6]

Yabuzaki J. 2017. Carotenoids Database: structures, chemical fingerprints and distribution among organisms. Database 2017:bax004

doi: 10.1093/database/bax004
[7]

Zita W, Shanmugabalaji V, Ezquerro M, Rodriguez-Concepcion M, Kessler F, et al. 2023. A quantitative method to measure geranylgeranyl diphosphate (GGPP) and geranylgeranyl monophosphate (GGP) in tomato (Solanum lycopersicum) fruit. Plant Methods 19:55

doi: 10.1186/s13007-023-01034-w
[8]

Zhou F, Wang CY, Gutensohn M, Jiang L, Zhang P, et al. 2017. Arecruiting protein of geranylgeranyl diphosphate synthase controls metabolic fluxtoward chlorophyll biosynthesis in rice. Proceedings of the National Academy of Sciences of the United States of America 114:6866−6871

doi: 10.1073/pnas.1705689114
[9]

Zhou K, Ren Y, Lv J, Wang Y, Liu F, et al. 2013. Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. Planta 237:279−292

doi: 10.1007/s00425-012-1756-1
[10]

Li YM, Liu DJ, Feng GJ, Liu C, Yang XX, et al. 2020. Biochemical mechanism of golden yellow pod color in common bean. Acta Horticulturae Sinica 47:749−758 (in Chinese)

doi: 10.16420/j.issn.0513-353x.2019-0408
[11]

Wang M, Chen L, Liang Z, He X, Liu W, et al. 2020. Metabolome and transcriptome analyses reveal chlorophyll and anthocyanin metabolism pathway associated with cucumber fruit skin color. BMC Plant Biology 20:386

doi: 10.1186/s12870-020-02597-9
[12]

Zhang A, Zheng J, Chen X, Shi X, Wang H, et al. 2021. Comprehensive analysis of transcriptome and metabolome reveals the flavonoid metabolic pathway is associated with fruit peel coloration of melon. Molecules 26:2830

doi: 10.3390/molecules26092830
[13]

Xu X, Lu X, Tang Z, Zhang X, Lei F, et al. 2021. Combined analysis of carotenoid metabolites and the transcriptome to reveal the molecular mechanism underlying fruit colouration in zucchini (Cucurbita pepo L.). Food Chemistry: Molecular Sciences 2:100021

doi: 10.1016/j.fochms.2021.100021
[14]

Luo Y, Wang C, Wang M, Wang Y, Xu W, et al. 2021. Accumulation of carotenoids and expression of carotenoid biosynthesis genes in fruit flesh during fruit development in two Cucurbita maxima inbred lines. Horticultural Plant Journal 7:529−538

doi: 10.1016/j.hpj.2020.07.006
[15]

Wyatt LE, Strickler SR, Mueller LA, Mazourek M. 2015. An acorn squash (Cucurbita pepo ssp. ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita. Horticulture Research 2:14070

doi: 10.1038/hortres.2014.70
[16]

González-Verdejo CI, Obrero Á, Román B, Gómez P. 2015. Expression profile of carotenoid cleavage dioxygenase genes in summer squash (Cucurbita pepo L.). Plant Foods for Human Nutrition 70:200−206

doi: 10.1007/s11130-015-0482-9
[17]

Zheng W, Tian Y, Shi H, Chen M, Hong S, et al. 2023. Exogenous 5-aminolevulinic acid promotes plant growth and salinity tolerance of grape rootstocks in coastal areas. Horticulture, Environment, and Biotechnology 64:179−191

doi: 10.1007/s13580-022-00474-y
[18]

Kang C, Xia X, Zhang D, Zhang Y, Wu Q. 2025. Sodium alginate composite coating inhibited postharvest greening and improved nutritional quality of potato tubers by regulating chlorophyll biosynthesis. Horticulturae 11:950

doi: 10.3390/horticulturae11080950
[19]

Zhao Y, Liu Y, Chen X, Xiao J. 2023. Genome resequencing and transcriptome analysis reveal the molecular mechanism of albinism in Cordyceps militaris. Frontiers in Microbiology 14:1153153

doi: 10.3389/fmicb.2023.1153153
[20]

Umer MJ, Bin Safdar L, Gebremeskel H, Zhao S, Yuan P, et al. 2020. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles. Horticulture Research 7:193

doi: 10.1038/s41438-020-00416-8
[21]

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

doi: 10.1186/1471-2105-9-559
[22]

Stanley L, Yuan YW. 2019. Transcriptional regulation of carotenoid biosynthesis in plants: so many regulators, so little consensus. Frontiers in Plant Science 10:1017

doi: 10.3389/fpls.2019.01017
[23]

Sun XL, Wang B, Gu SJ, Wang ZF. 2003. Correlations of immature skin color and pigments in cucumber. Horticulturae Sinica 6:721 (in Chinese)

[24]

Yuan H, Zhang J, Nageswaran D, Li L. 2015. Carotenoid metabolism and regulation in horticultural crops. Horticulture Research 2:15036

doi: 10.1038/hortres.2015.36
[25]

Qiao HJ. 2019. The speed-limiting gene of chlorophyll synthesis in colour-leafed of dendrobium catenatum. Dissertation. Chinese Academy of Forestry, Beijing, China. pp. 47−48 doi: 10.27625/d.cnki.gzlky.2019.000103

[26]

Kim C, Apel K. 2004. Substrate-dependent and organ-specific chloroplast protein import in planta. The Plant Cell 16:88−98

doi: 10.1105/tpc.015008
[27]

Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, et al. 2003. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant and Cell Physiology 44:463−472

doi: 10.1093/pcp/pcg064
[28]

Niu JQ, Chen Q, Lu XN, Wang XQ, Tang ZL, et al. 2023. Fine mapping and identifying candidate gene of Y underlying yellow peel in Cucurbita pepo. Frontiers in Plant Science 14:1159937

doi: 10.3389/fpls.2023.1159937
[29]

Zhang L, Zhang Q, Li W, Zhang S, Xi W, et al. 2019. Identification of key genes and regulators associated with carotenoid metabolism in apricot (Prunus armeniaca) fruit using weighted gene coexpression network analysis. BMC Genomics 20:876

doi: 10.1186/s12864-019-6261-5
[30]

Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, et al. 2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences of the United States of America 101:9897−9902

doi: 10.1073/pnas.0400935101
[31]

Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, et al. 2014. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genetics 10:e1004416

doi: 10.1371/journal.pgen.1004416
[32]

Wang W, Wang P, Li X, Wang Y, Tian S, et al. 2021. The transcription factor SlHY5 regulates the ripening of tomato fruit at both the transcriptional and translational levels. Horticulture Research 8:83

doi: 10.1038/s41438-021-00523-0
[33]

Wang N, Sun Y, Lian R, Guo Z, Yu Y, et al. 2023. Genome-wide screening of AP2/ERF transcription factors involved in Citrus maxima 'Sanhongmiyou' exocarp coloring. Scientia Horticulturae 318:112041

doi: 10.1016/j.scienta.2023.112041
[34]

Chen L, Dong J, Qiu Z, Bu R, Zhou Y, et al. 2025. A 13-bp insertion in CmAPRR2 gene disrupts its function in regulating the green rind formation of immature melon fruit (Cucumis melo L.). Plant Science 359:112590

doi: 10.1016/j.plantsci.2025.112590
[35]

Liu H, Jiao J, Liang X, Liu J, Meng H, et al. 2016. Map-based cloning, identification and characterization of the W gene controlling white immature fruit color in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 129:1247−1256

doi: 10.1007/s00122-016-2700-8
[36]

Oren E, Tzuri G, Vexler L, Dafna A, Meir A, et al. 2019. The multi-allelic APRR2 gene is associated with fruit pigment accumulation in melon and watermelon. Journal of Experimental Botany 70:3781−3794

doi: 10.1093/jxb/erz182
[37]

Ding W, Luo Y, Li W, Chen F, Wang C, et al. 2024. Fine mapping and transcriptome profiling reveal CpAPRR2 to modulate immature fruit rind color formation in zucchini (Cucurbita pepo). Theoretical and Applied Genetics 137:167

doi: 10.1007/s00122-024-04676-z
[38]

Ma J, Yuan G, Xu X, Zhang H, Qiu Y, et al. 2025. Identification and molecular marker development for peel color gene in melon (Cucumis melo L.). Journal of Integrative Agriculture 24:2589−2600

doi: 10.1016/j.jia.2024.11.004
[39]

Zhai X, Yan J, Liu W, Li Z, Cao Z, et al. 2025. Map-based cloning revealed BhAPRR2 gene regulating the black peel formation of mature fruit in wax gourd (Benincasa hispida). Theoretical and Applied Genetics 138:3

doi: 10.1007/s00122-024-04796-6
[40]

Yue Z, Fu Y, Dai X, Chen Y, Guo C, et al. 2025. The KNOX transcription factor ClSP activates ClAPRR2 to regulate dark green stripe formation in watermelon. Plant Biotechnology Journal 23:3012−3023

doi: 10.1111/pbi.70127
[41]

Chung MY, Vrebalov J, Alba R, Lee J, McQuinn R, et al. 2010. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. The Plant Journal 64:936−947

doi: 10.1111/j.1365-313X.2010.04384.x
[42]

Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, et al. 2011. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. The Plant Cell 23:923−941

doi: 10.1105/tpc.110.081273
[43]

Liu W, Li Q, Wang Y, Wu T, Yang Y, et al. 2017. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency. Biochemical and Biophysical Research Communications 491:862−868

doi: 10.1016/j.bbrc.2017.04.014
[44]

Quesada V, Sarmiento-Mañús R, González-Bayón R, Hricová A, Pérez-Marcos R, et al. 2011. Arabidopsis RUGOSA2 encodes an mTERF family member required for mitochondrion, chloroplast and leaf development. The Plant Journal 68:738−753

doi: 10.1111/j.1365-313X.2011.04726.x
[45]

Robles P, Micol JL, Quesada V. 2012. Arabidopsis MDA1, a nuclear-encoded protein, functions in chloroplast development and abiotic stress responses. PLoS One 7:e42924

doi: 10.1371/journal.pone.0042924
[46]

Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmüller R. 2006. pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. The Plant Cell 18:176−197

doi: 10.1105/tpc.105.036392