[1]

Mazzola M, Manici LM. 2012. Apple replant disease: role of microbial ecology in cause and control. Annual Review of Phytopathology 50:45−65

doi: 10.1146/annurev-phyto-081211-173005
[2]

Pound MP, French AP, Atkinson JA, Wells DM, Bennett MJ, et al. 2013. RootNav: navigating images of complex root architectures. Plant Physiology 162:1802−1814

doi: 10.1104/pp.113.221531
[3]

Willett M, Smith TJ, Peterson AB, Hinman H, Stevens RG, et al. 1994. Growing profitable apple orchards in replant sites: an interdisciplinary team approach in Washington State. HortTechnology 4:175−181

doi: 10.21273/HORTTECH.4.2.175
[4]

Duan YN, Jiang WT, Zhang R, Chen R, Chen XS, et al. 2022. Discovery of Fusarium proliferatum f. sp. malus domestica causing apple replant disease in China. Plant Disease 106:2958−2966

doi: 10.1094/pdis-12-21-2802-re
[5]

Tilston EL, Deakin G, Bennett J, Passey T, Harrison N, et al. 2020. Effect of fungal, oomycete and nematode interactions on apple root development in replant soil. CABI Agriculture and Bioscience 1:14

doi: 10.1186/s43170-020-00014-7
[6]

Slykhuis JT. 1990. Replant disease. In Compendium of Apple and Pear Diseases, eds. Jones AL, Aldwinckle HS. St. Paul, USA: APS Press. pp. 47−48

[7]

Deakin G, Fernández-Fernández F, Bennett J, Passey T, Harrison N, et al. 2019. The effect of rotating apple rootstock genotypes on apple replant disease and rhizosphere microbiome. Phytobiomes Journal 3:273−285

doi: 10.1094/PBIOMES-03-19-0018-R
[8]

Winkelmann T, Smalla K, Amelung W, Baab G, Grunewaldt-Stöcker G, et al. 2019. Apple replant disease: causes and mitigation strategies. Current Issues in Molecular Biology 30:89−106

doi: 10.21775/cimb.030.089
[9]

Mao Z, Wang Y. 2019. Apple replant disease: causes and management. In Integrated Management of Diseases and Insect Pests of Tree Fruit, eds. Xu X, Fountain M. 1st Edition. London: Burleigh Dodds Science Publishing. 480 pp. doi: 10.1201/9780429266690

[10]

Rumberger A, Yao S, Merwin IA, Nelson EB, Thies JE. 2004. Rootstock genotype and orchard replant position rather than soil fumigation or compost amendment determine tree growth and rhizosphere bacterial community composition in an apple replant soil. Plant and Soil 264:247−260

doi: 10.1023/B:PLSO.0000047760.13004.94
[11]

Mazzola M, Gu YH. 2000. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials. Phytopathology 90:114−119

doi: 10.1094/PHYTO.2000.90.2.114
[12]

Utkhede RS, Smith EM. 2000. Impact of chemical, biological and cultural treatments on the growth and yield of apple in replant-disease soil. Australasian Plant Pathology 29:129−136

doi: 10.1071/AP00021
[13]

St. Laurent A, Merwin IA, Fazio G, Thies JE, Brown MG. 2010. Rootstock genotype succession influences apple replant disease and root-zone microbial community composition in an orchard soil. Plant and Soil 337:259−272

doi: 10.1007/s11104-010-0522-z
[14]

Balbín-Suárez A, Lucas M, Vetterlein D, Sørensen SJ, Winkelmann T, et al. 2020. Exploring microbial determinants of apple replant disease (ARD): a microhabitat approach under split-root design. FEMS Microbiology Ecology 96:fiaa211

doi: 10.1093/femsec/fiaa211
[15]

Tilston EL, Deakin G, Bennett J, Passey T, Harrison N, et al. 2018. Candidate causal organisms for apple replant disease in the United Kingdom. Phytobiomes Journal 2:261−274

doi: 10.1094/PBIOMES-11-18-0050-R
[16]

Wang L, Mazzola M. 2019. Field evaluation of reduced rate Brassicaceae seed meal amendment and rootstock genotype on the microbiome and control of apple replant disease. Phytopathology 109:1378−1391

doi: 10.1094/PHYTO-02-19-0045-R
[17]

Sun G, Lu H, Zhao Y, Zhou J, Jackson R, et al. 2022. AirMeasurer: open-source software to quantify static and dynamic traits derived from multiseason aerial phenotyping to empower genetic mapping studies in rice. New Phytologist 236:1584−1604

doi: 10.1111/nph.18314
[18]

Watanabe K, Guo W, Arai K, Takanashi H, Kajiya-Kanegae H, et al. 2017. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Frontiers in Plant Science 8:421

doi: 10.3389/fpls.2017.00421
[19]

Phansalkar N, More S, Sabale A, Joshi M. 2011. Adaptive local thresholding for detection of nuclei in diversity stained cytology images. Proc. 2011 International Conference on Communications and Signal Processing, Kerala, India, 10−12 February, 2011. Kerala, India: IEEE. pp. 218−220 doi: 10.1109/ICCSP.2011.5739305

[20]

Salembier P, Oliveras A, Garrido L. 1998. Antiextensive connected operators for image and sequence processing. IEEE Transactions on Image Processing 7:555−570

doi: 10.1109/83.663500
[21]

Preparata FP, Hong SJ. 1977. Convex hulls of finite sets of points in two and three dimensions. Communications of the ACM 20:87−93

doi: 10.1145/359423.359430
[22]

Berruti A, Lumini E, Balestrini R, Bianciotto V. 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: let's benefit from past successes. Frontiers in Microbiology 6:1559

doi: 10.3389/fmicb.2015.01559
[23]

Gao T, Liu X, Shan L, Wu Q, Liu Y, et al. 2020. Dopamine and arbuscular mycorrhizal fungi act synergistically to promote apple growth under salt stress. Environmental and Experimental Botany 178:104159

doi: 10.1016/j.envexpbot.2020.104159
[24]

Wang M, Xiang L, Tang W, Chen X, Li C, et al. 2024. Apple-arbuscular mycorrhizal symbiosis confers resistance to Fusarium solani by inducing defense response and elevating nitrogen absorption. Physiologia Plantarum 1763:e14355

doi: 10.1111/ppl.14355
[25]

Mehta P, Bharat NK. 2013. Effect of indigenous arbuscular - mycorrhiza (Glomus spp) on apple (Malus domestica) seedlings grown in replant disease soil. Indian Journal of Agricultural Sciences 83:1173−1178

[26]

Čatská V. 1994. Interrelationships between vesicular-arbuscular mycorrhiza and rhizosphere microflora in apple replant disease. Biologia Plantarum 36:99−104

doi: 10.1007/BF02921276
[27]

Ridgway HJ, Kandula J, Stewart A. 2008. Arbuscular mycorrhiza improve apple rootstock growth in soil conducive to specific apple replant disease. New Zealand Plant Protection 61:48−53

doi: 10.30843/nzpp.2008.61.6817
[28]

Bahadur A, Batool A, Nasir F, Jiang S, Qin M, et al. 2019. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. International Journal of Molecular Sciences 20:4199

doi: 10.3390/ijms20174199
[29]

Tang H, Hassan MU, Feng L, Nawaz M, Shah AN, et al. 2022. The critical role of arbuscular mycorrhizal fungi to improve drought tolerance and nitrogen use efficiency in crops. Frontiers in Plant Science 13:919166

doi: 10.3389/fpls.2022.919166
[30]

Duan Y, Zhao L, Jiang W, Chen R, Zhang R, et al. 2022. The phlorizin-degrading Bacillus licheniformis XNRB-3 mediates soil microorganisms to alleviate apple replant disease. Frontiers in Microbiology 13:839484

doi: 10.3389/fmicb.2022.839484
[31]

Duan Y, Chen R, Zhang R, Jiang W, Chen X, et al. 2022. Isolation and identification of Bacillus vallismortis HSB-2 and its biocontrol potential against apple replant disease. Biological Control 170:104921

doi: 10.1016/j.biocontrol.2022.104921
[32]

Li B, He X, Guo S, Li D, Wang Y, et al. 2024. Characterization of Bacillus amyloliquefaciens BA-4 and its biocontrol potential against Fusarium-related apple replant disease. Frontiers in Plant Science 15:1370440

doi: 10.3389/fpls.2024.1370440
[33]

Utkhlde RS, Li TSC. 1989. Evaluation of Bacillus subtilis for potential control of apple replant disease. Journal of Phytopathology 126:305−312

doi: 10.1111/j.1439-0434.1989.tb04493.x
[34]

Wang H, Zhang R, Duan Y, Jiang W, Chen X, et al. 2021. The endophytic strain Trichoderma asperellum 6S-2: an efficient biocontrol agent against apple replant disease in China and a potential plant-growth-promoting fungus. Journal of Fungi 7:1050

doi: 10.3390/jof7121050
[35]

Xu XM, Jeffries P, Pautasso M, Jeger MJ. 2011. Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101:1024−1031

doi: 10.1094/PHYTO-08-10-0216
[36]

Jakobsen I, Rosendahl L. 1990. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist 115:77−83

doi: 10.1111/j.1469-8137.1990.tb00924.x
[37]

Smith SE, Read D. 2008. Mycorrhizal Symbiosis. London: Academic Press. 787 pp. doi: 10.1016/B978-0-12-370526-6.X5001-6

[38]

Zydlik Z, Zydlik P, Wieczorek R. 2021. The effects of bioinoculants based on mycorrhizal and Trichoderma spp. fungi in an apple tree nursery under replantation conditions. Agronomy 11:2355

doi: 10.3390/agronomy11112355
[39]

Verma PP, Sharma S, Kaur M. 2011. Effect of indigenous strains of fluorescent Pseudomonas sp. on growth of apple plants in replant site of Himachal Pradesh. Indian Journal of Applied Research 4:432−437

doi: 10.15373/2249555x/july2014/137
[40]

Mehmood N, Saeed M, Zafarullah S, Hyder S, Rizvi ZF, et al. 2023. Multifaceted impacts of plant-beneficial Pseudomonas spp. in managing various plant diseases and crop yield improvement. ACS Omega 8:22296−22315

doi: 10.1021/acsomega.3c00870
[41]

Höfte M, Altier N. 2010. Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Research in Microbiology 161:464−471

doi: 10.1016/j.resmic.2010.04.007
[42]

Wang L, Somera TS, Hargarten H, Honaas L, Mazzola M. 2021. Comparative analysis of the apple root transcriptome as affected by rootstock genotype and Brassicaceae seed meal soil amendment: implications for plant health. Microorganisms 9:763

doi: 10.3390/microorganisms9040763
[43]

Zhao L, Wang G, Liu X, Chen X, Shen X, et al. 2022. Control of apple replant disease using mixed cropping with Brassica juncea or Allium fistulosum. Agriculture 12:68

doi: 10.3390/agriculture12010068
[44]

Kviklys D, Viškelis J, Liaudanskas M, Janulis V, Laužikė K, et al. 2022. Apple fruit growth and quality depend on the position in tree canopy. Plants 11:196

doi: 10.3390/plants11020196
[45]

Willaume M, Lauri PÉ, Sinoquet H. 2004. Light interception in apple trees influenced by canopy architecture manipulation. Trees 18:705−713

doi: 10.1007/s00468-004-0357-4
[46]

Xia Y, Li H, Zhang F, Sun G, Qi K, et al. 2025. OrchardQuant-3D: combining drone and LiDAR to perform scalable 3D phenotyping for characterising key canopy and floral traits in fruit orchards. Plant Biotechnology Journal 23:4910−4929

doi: 10.1111/pbi.70229
[47]

Reim S, Emeriewen OF, Peil A, Flachowsky H. 2023. Deciphering the mechanism of tolerance to apple replant disease using a genetic mapping approach in a malling 9 × M. × robusta 5 population identifies SNP markers linked to candidate genes. International Journal of Molecular Sciences 24:6307

doi: 10.3390/ijms24076307
[48]

Cook C, Magan N, Xu XM. 2023. Inter-row cropping and rootstock genotype selection in a UK cider orchard to combat apple replant disease. Phytopathology Research 5:28

doi: 10.1186/s42483-023-00184-y
[49]

Leinfelder MM, Merwin IA. 2006. Rootstock selection, preplant soil treatments, and tree planting positions as factors in managing apple replant disease. HortScience 41:394−401

doi: 10.21273/HORTSCI.41.2.394