[1]

Larsson DGJ, Flach CF. 2022. Antibiotic resistance in the environment. Nature Reviews Microbiology 20:257−269

doi: 10.1038/s41579-021-00649-x
[2]

Hou J, Long X, Wang X, Li L, Mao D, et al. 2023. Global trend of antimicrobial resistance in common bacterial pathogens in response to antibiotic consumption. Journal of Hazardous Materials 442:130042

doi: 10.1016/j.jhazmat.2022.130042
[3]

Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, et al. 2019. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 365:eaaw1944

doi: 10.1126/science.aaw1944
[4]

Zheng D, Yin G, Liu M, Chen C, Jiang Y, et al. 2021. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Science of The Total Environment 777:146009

doi: 10.1016/j.scitotenv.2021.146009
[5]

Wang Z, Chen Q, Zhang J, Zou Y, Huang Y, et al. 2023. Insights into antibiotic stewardship of lake-rivers-basin complex systems for resistance risk control. Water Research 228:119358

doi: 10.1016/j.watres.2022.119358
[6]

He LX, He LY, Gao FZ, Zhang M, Chen J, et al. 2023. Mariculture affects antibiotic resistome and microbiome in the coastal environment. Journal of Hazardous Materials 452:131208

doi: 10.1016/j.jhazmat.2023.131208
[7]

Zhang Z, Zhang Q, Wang T, Xu N, Lu T, et al. 2022. Assessment of global health risk of antibiotic resistance genes. Nature Communications 13:1553

doi: 10.1038/s41467-022-29283-8
[8]

Seymour JR, Amin SA, Raina JB, Stocker R. 2017. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nature Microbiology 2:17065

doi: 10.1038/nmicrobiol.2017.65
[9]

Zadjelovic V, Wright RJ, Borsetto C, Quartey J, Cairns TN, et al. 2023. Microbial hitchhikers harbouring antimicrobial-resistance genes in the riverine plastisphere. Microbiome 11:225

doi: 10.1186/s40168-023-01662-3
[10]

Luo L, Wang Z, Huang X, Gu JD, Yu C, et al. 2024. The fate of antibiotic resistance genes in wastewater containing microalgae treated by chlorination, ultra-violet, and Fenton reaction. Water Research 254:121392

doi: 10.1016/j.watres.2024.121392
[11]

Ruas G, Serejo ML, Farias SL, Scarcelli P, Boncz MÁ. 2022. Removal of pathogens from domestic wastewater by microalgal-bacterial systems under different cultivation conditions. International Journal of Environmental Science and Technology 19:10177−10188

doi: 10.1007/s13762-021-03820-2
[12]

Kiki C, Qin D, Liu L, Qiao M, Adyari B, et al. 2023. Unraveling the role of microalgae in mitigating antibiotics and antibiotic resistance genes in photogranules treating antibiotic wastewater. Environmental Science & Technology 57:16940−16952

doi: 10.1021/acs.est.3c04798
[13]

Liu L, Yu X, Wu D, Su J. 2022. Antibiotic resistance gene profile in aerobic granular reactor under antibiotic stress: can eukaryotic microalgae act as inhibiting factor? Environmental Pollution 304:119221

doi: 10.1016/j.envpol.2022.119221
[14]

Liu W, Huang W, Cao Z, Ji Y, Liu D, et al. 2022. Microalgae simultaneously promote antibiotic removal and antibiotic resistance genes/bacteria attenuation in algal-bacterial granular sludge system. Journal of Hazardous Materials 438:129286

doi: 10.1016/j.jhazmat.2022.129286
[15]

Jackrel SL, Yang JW, Schmidt KC, Denef VJ. 2021. Host specificity of microbiome assembly and its fitness effects in phytoplankton. The ISME Journal 15:774−788

doi: 10.1038/s41396-020-00812-x
[16]

Wang Q, Geng L, Gao Z, Sun Y, Li X, et al. 2024. Microalgae enhances the adaptability of epiphytic bacteria to sulfamethoxazole stress and proliferation of antibiotic resistance genes mediated by integron. Environmental Science & Technology 58:19397−19407

doi: 10.1021/acs.est.4c04925
[17]

Xue X, Qin Z, Gao P, Wang L, Su X, et al. 2025. Host-specific assembly of phycosphere microbiome and enrichment of the associated antibiotic resistance genes: integrating species of microalgae hosts, developmental stages and water contamination. Environmental Pollution 376:126392

doi: 10.1016/j.envpol.2025.126392
[18]

Liu F, Mao J, Kong W, Hua Q, Feng Y, et al. 2020. Interaction variability shapes succession of synthetic microbial ecosystems. Nature Communications 11:309

doi: 10.1038/s41467-019-13986-6
[19]

Li SN, Zhang C, Li F, Ren NQ, Ho SH. 2023. Recent advances of algae-bacteria consortia in aquatic remediation. Critical Reviews in Environmental Science and Technology 53:315−339

doi: 10.1080/10643389.2022.2052704
[20]

Wu X, Kong L, Feng Y, Zheng R, Zhou J, et al. 2024. Communication mediated interaction between bacteria and microalgae advances photogranulation. Science of The Total Environment 914:169975

doi: 10.1016/j.scitotenv.2024.169975
[21]

Mönnich J, Tebben J, Bergemann J, Case R, Wohlrab S, et al. 2020. Niche-based assembly of bacterial consortia on the diatom Thalassiosira rotula is stable and reproducible. The ISME Journal 14:1614−1625

doi: 10.1038/s41396-020-0631-5
[22]

Hu C, Shi Z, Hu T, Gao Y, Liu Q, et al. 2024. A comprehensive review of diatom-bacterial interactions inferred from bibliometric analysis. Reviews in Aquaculture 17:e12974

doi: 10.1111/raq.12974
[23]

Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, et al. 2016. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife 5:e11888

doi: 10.7554/eLife.11888
[24]

Thomas F, Bordron P, Eveillard D, Michel G. 2017. Gene expression analysis of Zobellia galactanivorans during the degradation of algal polysaccharides reveals both substrate-specific and shared transcriptome-wide responses. Frontiers in Microbiology 8:1808

doi: 10.3389/fmicb.2017.01808
[25]

Kouzuma A, Watanabe K. 2015. Exploring the potential of algae/bacteria interactions. Current Opinion in Biotechnology 33:125−129

doi: 10.1016/j.copbio.2015.02.007
[26]

Chen J, Li H, Zhang Z, He C, Shi Q, et al. 2020. DOC dynamics and bacterial community succession during long-term degradation of Ulva prolifera and their implications for the legacy effect of green tides on refractory DOC pool in seawater. Water Research 185:116268

doi: 10.1016/j.watres.2020.116268
[27]

Fan X, Kong L, Wang J, Tan Y, Xu X, et al. 2024. Surface-programmed microbiome assembly in phycosphere to microplastics contamination. Water Research 262:122064

doi: 10.1016/j.watres.2024.122064
[28]

Xiao R, Zheng Y. 2016. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology Advances 34:1225−1244

doi: 10.1016/j.biotechadv.2016.08.004
[29]

Peng S, Wang Z, Ai J, Li L, Zhou H, et al. 2025. Molecular choreography of sludge extracellular polymeric substances—from biomolecule identification to energetics and assembly dynamics. PNAS Nexus 4(5):pgaf157

doi: 10.1093/pnasnexus/pgaf157
[30]

Xue H, Feng J, Tang Y, Wang X, Tang J, et al. 2024. Research progress on the interaction of the polyphenol–protein–polysaccharide ternary systems. Chemical and Biological Technologies in Agriculture 11(1):95

doi: 10.1186/s40538-024-00632-7
[31]

Böhning J, Tarafder AK, Bharat TAM. 2024. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. The Biochemical Journal 481:245−263

doi: 10.1042/bcj20210301
[32]

Wang C, Tao Y. 2025. Heterogeneous microalgal extracellular polymeric substances-phenanthrene interaction mechanisms modulated by time-dynamic secretion of tryptophan. Water Research 285:124162

doi: 10.1016/j.watres.2025.124162
[33]

Gong W, Guo L, Huang C, Xie B, Jiang M, et al. 2024. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. Science of The Total Environment 930:172601

doi: 10.1016/j.scitotenv.2024.172601
[34]

Sheng GP, Xu J, Li WH, Yu HQ. 2013. Quantification of the interactions between Ca2+, Hg2+ and extracellular polymeric substances (EPS) of sludge. Chemosphere 93:1436−1441

doi: 10.1016/j.chemosphere.2013.07.076
[35]

You Z, Wang C, Yang X, Liu Z, Guan Y, et al. 2024. Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems. Environmental Research 251:118692

doi: 10.1016/j.envres.2024.118692
[36]

Zhang Q, Zhang ZY, Lu T, Peijnenburg WJGM, Gillings M, et al. 2020. Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Communications Biology 3:737

doi: 10.1038/s42003-020-01468-1
[37]

Zhao Y, Zhang J, Zheng Y, Shi J, Hu Z, et al. 2025. Overlooked dissemination risks of antimicrobial resistance through green tide proliferation. Water Research 268:122714

doi: 10.1016/j.watres.2024.122714
[38]

Lipsman V, Shlakhter O, Rocha J, Segev E. 2024. Bacteria contribute exopolysaccharides to an algal-bacterial joint extracellular matrix. npj Biofilms and Microbiomes 10:36

doi: 10.1038/s41522-024-00510-y
[39]

Zhang B, Li W, Guo Y, Zhang Z, Shi W, et al. 2020. Microalgal-bacterial consortia: from interspecies interactions to biotechnological applications. Renewable and Sustainable Energy Reviews 118:109563

doi: 10.1016/j.rser.2019.109563
[40]

Zhang B, Zhang H, Du C, Ng QX, Hu C, et al. 2017. Metabolic responses of the growing Daphnia similis to chronic AgNPs exposure as revealed by GC-Q-TOF/MS and LC-Q-TOF/MS. Water Research 114:135−143

doi: 10.1016/j.watres.2017.02.046
[41]

Mohsenpour SF, Hennige S, Willoughby N, Adeloye A, Gutierrez T. 2021. Integrating micro-algae into wastewater treatment: a review. Science of The Total Environment 752:142168

doi: 10.1016/j.scitotenv.2020.142168
[42]

Amin SA, Küpper FC, Green DH, Harris WR, Carrano CJ. 2007. Boron binding by a siderophore isolated from marine bacteria associated with the toxic dinoflagellate Gymnodinium catenatum. Journal of the American Chemical Society 129:478−479

doi: 10.1021/ja067369u
[43]

Zhou J, Lyu Y, Richlen ML, Anderson DM, Cai Z. 2016. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions. Critical Reviews in Plant Sciences 35:81−105

doi: 10.1080/07352689.2016.1172461
[44]

Li S, Li X, Chang H, Zhong N, Ren N, et al. 2023. Comprehensive insights into antibiotic resistance gene migration in microalgal-bacterial consortia: mechanisms, factors, and perspectives. Science of The Total Environment 901:166029

doi: 10.1016/j.scitotenv.2023.166029
[45]

Ashraf N, Ahmad F, Lu Y. 2023. Synergy between microalgae and microbiome in polluted waters. Trends in Microbiology 31:9−21

doi: 10.1016/j.tim.2022.06.004
[46]

Cho KH, Wolny J, Kase JA, Unno T, Pachepsky Y. 2022. Interactions of E. coli with algae and aquatic vegetation in natural waters. Water Research 209:117952

doi: 10.1016/j.watres.2021.117952
[47]

Abreu A, Bourgois E, Gristwood A, Troublé R, Acinas SG, et al. 2022. Priorities for ocean microbiome research. Nature Microbiology 7:937−947

doi: 10.1038/s41564-022-01145-5
[48]

Gao FZ, He LY, Liu YS, Zhao JL, Zhang T, et al. 2024. Integrating global microbiome data into antibiotic resistance assessment in large rivers. Water Research 250:121030

doi: 10.1016/j.watres.2023.121030
[49]

Zhang Y, Liu C, Chen H, Chen J, Li J, et al. 2022. Metagenomic insights into resistome coalescence in an urban sewage treatment plant-river system. Water Research 224:119061

doi: 10.1016/j.watres.2022.119061
[50]

Xue X, Su X, Zhou L, Ji J, Qin Z, et al. 2023. Antibiotic-induced recruitment of specific algae-associated microbiome enhances the adaptability of Chlorella vulgaris to antibiotic stress and incidence of antibiotic resistance. Environmental Science & Technology 57:13336−13345

doi: 10.1021/acs.est.3c02801
[51]

Xue X, Wang L, Xing H, Zhao Y, Li X, et al. 2021. Characteristics of phytoplankton-zooplankton communities and the roles in the transmission of antibiotic resistance genes under the pressure of river contamination. Science of The Total Environment 780:146452

doi: 10.1016/j.scitotenv.2021.146452
[52]

Wang Z, Chen Q, Zhang J, Guan T, Chen Y, et al. 2020. Critical roles of cyanobacteria as reservoir and source for antibiotic resistance genes. Environment International 144:106034

doi: 10.1016/j.envint.2020.106034
[53]

Ji W, Ma J, Zheng Z, Al-Herrawy AZ, Xie B, et al. 2024. Algae blooms with resistance in fresh water: potential interplay between Microcystis and antibiotic resistance genes. Science of The Total Environment 940:173528

doi: 10.1016/j.scitotenv.2024.173528
[54]

Lu DC, Wang FQ, Amann RI, Teeling H, Du ZJ. 2023. Epiphytic common core bacteria in the microbiomes of co-located green (Ulva), brown (Saccharina) and red (Grateloupia, Gelidium) macroalgae. Microbiome 11:126

doi: 10.1186/s40168-023-01559-1
[55]

Li S, Bai Y, Li Z, Wang A, Ren NQ, et al. 2025. Overlooked role of extracellular polymeric substances in antibiotic-resistance gene transfer within microalgae-bacteria system. Journal of Hazardous Materials 488:137206

doi: 10.1016/j.jhazmat.2025.137206
[56]

Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S. 2005. Studying plasmid horizontal transfer in situ: a critical review. Nature Reviews Microbiology 3:700−710

doi: 10.1038/nrmicro1232
[57]

Matsui K, Ishii N, Kawabata Z. 2003. Release of extracellular transformable plasmid DNA from Escherichia coli cocultivated with algae. Applied and Environmental Microbiology 69:2399−2404

doi: 10.1128/aem.69.4.2399-2404.2003
[58]

Cai G, Ge Y, Dong Z, Liao Y, Chen Y, et al. 2024. Temporal shifts in the phytoplankton network in a large eutrophic shallow freshwater lake subjected to major environmental changes due to human interventions. Water Research 261:122054

doi: 10.1016/j.watres.2024.122054
[59]

Seymour JR, McLellan SL. 2025. Climate change will amplify the impacts of harmful microorganisms in aquatic ecosystems. Nature Microbiology 10:615−626

doi: 10.1038/s41564-025-01948-2
[60]

Xu N, Qiu D, Zhang Z, Wang Y, Chen B, et al. 2023. A global atlas of marine antibiotic resistance genes and their expression. Water Research 244:120488

doi: 10.1016/j.watres.2023.120488
[61]

Liu Q, Jia J, Hu H, Li X, Zhao Y, et al. 2024. Nitrogen and phosphorus limitations promoted bacterial nitrate metabolism and propagation of antibiotic resistome in the phycosphere of Auxenochlorella pyrenoidosa. Journal of Hazardous Materials 468:133786

doi: 10.1016/j.jhazmat.2024.133786
[62]

Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America 112:E1326−E1332

doi: 10.1073/pnas.1414261112
[63]

Jiao C, Zhao D, Zhou T, Wu QL, Zeng J. 2023. Habitat-specific regulation of bacterial community dynamics during phytoplankton bloom succession in a subtropical eutrophic lake. Water Research 242:120252

doi: 10.1016/j.watres.2023.120252
[64]

Zainab SM, Junaid M, Xu N, Malik RN. 2020. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks. Water Research 187:116455

doi: 10.1016/j.watres.2020.116455
[65]

Yang Q, Gao Y, Ke J, Show PL, Ge Y, et al. 2021. Antibiotics: an overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered 12:7376−7416

doi: 10.1080/21655979.2021.1974657
[66]

Jonkers L, Hillebrand H, Kucera M. 2019. Global change drives modern plankton communities away from the pre-industrial state. Nature 570:372−375

doi: 10.1038/s41586-019-1230-3
[67]

Gunathilaka MDKL, Bao S, Liu X, Li Y, Pan Y. 2023. Antibiotic pollution of planktonic ecosystems: a review focused on community analysis and the causal chain linking individual- and community-level responses. Environmental Science & Technology 57:1199−1213

doi: 10.1021/acs.est.2c06787
[68]

Pan Y, Dong J, Wan L, Sun S, MacIsaac HJ, et al. 2020. Norfloxacin pollution alters species composition and stability of plankton communities. Journal of Hazardous Materials 385:121625

doi: 10.1016/j.jhazmat.2019.121625
[69]

Ye J, Du Y, Wang L, Qian J, Chen J, et al. 2017. Toxin release of cyanobacterium Microcystis aeruginosa after exposure to typical tetracycline antibiotic contaminants. Toxins 9:53

doi: 10.3390/toxins9020053
[70]

Gao Z, Cao M, Ma S, Geng H, Li J, et al. 2024. Sulfadiazine proliferated antibiotic resistance genes in the phycosphere of Chlorella pyrenoidosa: insights from bacterial communities and microalgal metabolites. Journal of Hazardous Materials 473:134679

doi: 10.1016/j.jhazmat.2024.134679
[71]

Ji M, Gao H, Diao L, Zhang J, Liang S, et al. 2022. Environmental impacts of antibiotics addition to algal-bacterial-based aquaponic system. Applied Microbiology and Biotechnology 106:3777−3786

doi: 10.1007/s00253-022-11944-9
[72]

Jia J, Liu Q, Wu C. 2023. Microplastic and antibiotic proliferated the colonization of specific bacteria and antibiotic resistance genes in the phycosphere of Chlorella pyrenoidosa. Journal of Hazardous Materials 455:131618

doi: 10.1016/j.jhazmat.2023.131618
[73]

Wang S, Ji B, Zhang M, Ma Y, Gu J, et al. 2020. Defensive responses of microalgal-bacterial granules to tetracycline in municipal wastewater treatment. Bioresource Technology 312:123605

doi: 10.1016/j.biortech.2020.123605
[74]

Li J, Li J, Zhang Y, Lu H. 2022. The responses of marine anammox bacteria-based microbiome to multi-antibiotic stress in mariculture wastewater treatment. Water Research 224:119050

doi: 10.1016/j.watres.2022.119050
[75]

Cao M, Wang F, Zhou B, Chen H, Yuan R, et al. 2023. Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. Journal of Hazardous Materials 443:130201

doi: 10.1016/j.jhazmat.2022.130201
[76]

Munasinghe-Arachchige SP, Delanka-Pedige HMK, Henkanatte-Gedera SM, Tchinda D, Zhang Y, et al. 2019. Factors contributing to bacteria inactivation in the Galdieria sulphuraria-based wastewater treatment system. Algal Research-Biomass Biofuels and Bioproducts 38:101392

doi: 10.1016/j.algal.2018.101392
[77]

Fan Y, Wang H, Sun C, Wang Y, Jin C, et al. 2023. Metagenomic and transcriptome elucidating the sulfamethoxazole degradation and metabolism pathways in fermentative bacteria and microalgae coupling system for mariculture wastewater treatment. Chemical Engineering Journal 474:145560

doi: 10.1016/j.cej.2023.145560
[78]

Matviichuk O, Mondamert L, Geffroy C, Dagot C, Labanowski J. 2023. Life in an unsuspected antibiotics world: river biofilms. Water Research 231:119611

doi: 10.1016/j.watres.2023.119611
[79]

Chen M, Wang J, Xia L, Li G, Wang W, et al. 2025. Different fitness costs during biofilm growth from antibiotic-resistant bacteria to antibiotic-sensitive bacteria under the toxicity stress of copper substrate. ACS ES&T Water 5:1546−1556

doi: 10.1021/acsestwater.4c00603
[80]

You X, Xu N, Yang X, Sun W. 2021. Pollutants affect algae-bacteria interactions: a critical review. Environmental Pollution 276:116723

doi: 10.1016/j.envpol.2021.116723
[81]

Moszczyński K, Mackiewicz P, Bodył A. 2012. Evidence for horizontal gene transfer from bacteroidetes bacteria to dinoflagellate minicircles. Molecular Biology and Evolution 29:887−892

doi: 10.1093/molbev/msr276
[82]

Hirooka S, Hirose Y, Kanesaki Y, Higuchi S, Fujiwara T, et al. 2017. Acidophilic green algal genome provides insights into adaptation to an acidic environment. Proceedings of the National Academy of Sciences of the United States of America 114:E8304−E8313

doi: 10.1073/pnas.1707072114
[83]

Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, et al. 2024. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nature Reviews Microbiology 22:650−665

doi: 10.1038/s41579-024-01041-1
[84]

Zheng B, Zhou L, Wang J, Dong P, Zhao T, et al. 2025. The shifts in microbial interactions and gene expression caused by temperature and nutrient loading influence Raphidiopsis raciborskii blooms. Water Research 268:122725

doi: 10.1016/j.watres.2024.122725
[85]

Qi H, Lv J, Liao J, Jin J, Ren Y, et al. 2025. Metagenomic insights into microalgae-bacterium-virus interactions and viral functions in phycosphere facing environmental fluctuations. Water Research 268:122676

doi: 10.1016/j.watres.2024.122676
[86]

Santos-Lopez A, Marshall CW, Scribner MR, Snyder DJ, Cooper VS. 2019. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. eLife 8:e47612

doi: 10.7554/eLife.47612