[1]

Joppa L, Willmott E. 2025. Six roadblocks to net zero — and how to get around them. Nature 640:31−34

doi: 10.1038/d41586-025-00935-1
[2]

Shi M, Gao S, Lyu H, Ma Q, Zhang X, et al. 2024. Comparison on the development and policy frameworks of CCUS technology in China and the United States. Clean Coal Technology 30(10):19−31 (in Chinese)

doi: 10.13226/j.issn.1006-6772.CCUS24041602
[3]

Yao Y, Lyu H, Peng X, Zhang X, Wang Y. 2024. Development trends and technological frontiers of global carbon management. Clean Coal Technology 30(10):32−40 (in Chinese)

doi: 10.13226/j.issn.1006-6772.CCUS24042401
[4]

Matter JM, Stute M, Snæbjörnsdottir SÓ, Oelkers EH, Gislason SR, et al. 2016. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352:1312−1314

doi: 10.1126/science.aad8132
[5]

Yang X, Wan Y, Zheng Y, He F, Yu Z, et al. 2019. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chemical Engineering Journal 366:608−621

doi: 10.1016/j.cej.2019.02.119
[6]

Chen W, Gong M, Li K, Xia M, Chen Z, et al. 2020. Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH. Applied Energy 278:115730

doi: 10.1016/j.apenergy.2020.115730
[7]

Li T, An X, Fu D. 2023. Review on nitrogen-doped porous carbon materials for CO2 adsorption and separation: recent advances and outlook. Energy & Fuels 37(12):8160−8179

doi: 10.1021/acs.energyfuels.3c00941
[8]

Eichler JE, Leonard H, Yang EK, Smith LA, Lauro SN, et al. 2024. Dual-cation activation of N-enriched porous carbons improves control of CO2 and N2 adsorption thermodynamics for selective CO2 capture. Advanced Functional Materials 34:2410171

doi: 10.1002/adfm.202410171
[9]

Hayat A, Sohail M, Alzahrani AYA, Ali H, Abu-Dief AM, et al. 2025. Recent advances in heteroatom-doped/hierarchical porous carbon materials: synthesis, design and potential applications. Progress in Materials Science 150:101408

doi: 10.1016/j.pmatsci.2024.101408
[10]

Wu J, Chen W, Chen L, Jiang X. 2022. Super-high N-doping promoted formation of sulfur radicals for continuous catalytic oxidation of H2S over biomass derived activated carbon. Journal of Hazardous Materials 424:127648

doi: 10.1016/j.jhazmat.2021.127648
[11]

Luo J, Chen Y, Huang H, Ma R, Ma N, et al. 2023. Microwave-coordinated KOH directionally modulated N/O co-doped porous biochar from Enteromorpha and its structure–effect relationships in efficient CO2 capture. Chemical Engineering Journal 473:145279

doi: 10.1016/j.cej.2023.145279
[12]

Ren L, Wang F, Cheng F, Yang F, Zhang K. 2023. Mechanisms of gas generation from conventional and microwave pyrolysis of coal slime. Chemical Engineering Journal 452:139388

doi: 10.1016/j.cej.2022.139388
[13]

Huang Q, Wei K, Xia H. 2019. Investigations in the recrystallization of evolved gases from pyrolysis process of melamine. Journal of Thermal Analysis and Calorimetry 138:3897−3903

doi: 10.1007/s10973-019-08338-x
[14]

Shao J, Wang Y, Che M, Xiao Q, Demir M, et al. 2025. N, S Co-doped porous carbons from coconut shell for selective CO2 adsorption. Journal of the Energy Institute 123:102273

doi: 10.1016/j.joei.2025.102273
[15]

Wang J, Yin Y, Liu X, Liu Y, Xiao Q, et al. 2025. Potassium metaborate-activated boron-doped porous carbons for selective CO2 adsorption. Separation and Purification Technology 376:134079

doi: 10.1016/j.seppur.2025.134079
[16]

Wang J, Wang Y, Liu X, Xiao Q, Demir M, et al. 2025. The synthesis of B-doped porous carbons via a sodium metaborate tetrahydrate activating agent: a novel approach for CO2 adsorption. Molecules 30:2564

doi: 10.3390/molecules30122564
[17]

Li J, Zhou W, Meng X, Huang Y, Li X, et al. 2024. Scalable confined-space microwave heating strategy enables the rapid preparation of N/O co-doped activated carbons with high gas capture capacity. Carbon 225:119152

doi: 10.1016/j.carbon.2024.119152
[18]

Tang Z, Gao J, Zhang Y, Du Q, Feng D, et al. 2023. Ultra-microporous biochar-based carbon adsorbents by a facile chemical activation strategy for high-performance CO2 adsorption. Fuel Processing Technology 241:107613

doi: 10.1016/j.fuproc.2022.107613
[19]

Mozaffari Majd M, Kordzadeh-Kermani V, Ghalandari V, Askari A, Sillanpää M. 2022. Adsorption isotherm models: a comprehensive and systematic review (2010−2020). Science of The Total Environment 812:151334

doi: 10.1016/j.scitotenv.2021.151334
[20]

Yuan J, Wang Y, Tang M, Hao X, Liu J, et al. 2023. Preparation of N, O co-doped carbon nanotubes and activated carbon composites with hierarchical porous structure for CO2 adsorption by coal pyrolysis. Fuel 333:126465

doi: 10.1016/j.fuel.2022.126465
[21]

Durán-Jiménez G, Stevens LA, Kostas ET, Hernández-Montoya V, Robinson JP, et al. 2020. Rapid, simple and sustainable synthesis of ultra-microporous carbons with high performance for CO2 uptake, via microwave heating. Chemical Engineering Journal 388:124309

doi: 10.1016/j.cej.2020.124309
[22]

Li Y, Wang S, Liu H, Meng F, Ma H, et al. 2014. Preparation and characterization of melamine/formaldehyde/polyethylene glycol crosslinking copolymers as solid–solid phase change materials. Solar Energy Materials and Solar Cells 127:92−97

doi: 10.1016/j.solmat.2014.04.013
[23]

Li J, Zhou W, Huang Y, Zhao Y, Li X, et al. 2024. Rapid, simple and sustainable preparation of N-rich activated carbons with high performance for gas adsorption, via microwave heating. Separation and Purification Technology 330:125464

doi: 10.1016/j.seppur.2023.125464
[24]

Zhu Y, Wu J, Zhang Y, Miao Z, Niu Y, et al. 2024. Preparation of hierarchically porous carbon ash composite material from fine slag of coal gasification and ash slag of biomass combustion for CO2 capture. Separation and Purification Technology 330:125452

doi: 10.1016/j.seppur.2023.125452
[25]

Li J, Zhou W, Su Y, Zhao Y, Zhang W, et al. 2022. The enhancement mechanism of the microwave-assisted toluene desorption for activated carbon regeneration based on the constructive interference. Journal of Cleaner Production 378:134542

doi: 10.1016/j.jclepro.2022.134542
[26]

Ghosh S, Sevilla M, Fuertes AB, Andreoli E, Ho J, et al. 2016. Defining a performance map of porous carbon sorbents for high-pressure carbon dioxide uptake and carbon dioxide–methane selectivity. Journal of Materials Chemistry A 4:14739−14751

doi: 10.1039/C6TA04936B
[27]

Wang X, Chen Q, Zhu H, Chen X, Yu G. 2023. In-situ study on structure evolution and gasification reactivity of biomass char with K and Ca catalysts at carbon dioxide atmosphere. Carbon Resources Conversion 6:27−33

doi: 10.1016/j.crcon.2022.10.002
[28]

Taluja Y, SanthiBhushan B, Yadav S, Srivastava A. 2016. Defect and functionalized graphene for supercapacitor electrodes. Superlattices and Microstructures 98:306−315

doi: 10.1016/j.spmi.2016.08.044
[29]

Chang CW, Kao YH, Shen PH, Kang PC, Wang CY. 2020. Nanoconfinement of metal oxide MgO and ZnO in zeolitic imidazolate framework ZIF-8 for CO2 adsorption and regeneration. Journal of Hazardous Materials 400:122974

doi: 10.1016/j.jhazmat.2020.122974
[30]

Liu S, Zhang Y, Tuo K, Wang L, Chen G. 2018. Structure, electrical conductivity, and dielectric properties of semi-coke derived from microwave-pyrolyzed low-rank coal. Fuel Processing Technology 178:139−147

doi: 10.1016/j.fuproc.2018.05.028
[31]

Li H, Shi S, Lin B, Lu J, Ye Q, et al. 2019. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals. Energy 187:115986

doi: 10.1016/j.energy.2019.115986
[32]

Pachfule P, Balan BK, Kurungot S, Banerjee R. 2012. One-dimensional confinement of a nanosized metal organic framework in carbon nanofibers for improved gas adsorption. Chemical Communications 48(14):2009−2011

doi: 10.1039/c2cc16877d
[33]

Chen Y, Kanan MW. 2025. Thermal Ca2+/Mg2+ exchange reactions to synthesize CO2 removal materials. Nature 638:972−979

doi: 10.1038/s41586-024-08499-2
[34]

Iyer GM, Ku CE, Zhang C. 2025. Hyperselective carbon membranes for precise high-temperature H2 and CO2 separation. Science Advances 11:eadt7512

doi: 10.1126/sciadv.adt7512
[35]

Wan J, Zhang G, Jin H, Wu J, Zhang N, et al. 2022. Microwave-assisted synthesis of well-defined nitrogen doping configuration with high centrality in carbon to identify the active sites for electrochemical hydrogen peroxide production. Carbon 191:340−349

doi: 10.1016/j.carbon.2022.01.061