| [1] |
Soltis DE, Albert VA, Savolainen V, Hilu K, Qiu YL, et al. 2004. Genome-scale data, angiosperm relationships, and ‘ending incongruence’: a cautionary tale in phylogenetics. |
| [2] |
Koenen EJM, Ojeda DI, Steeves R, Migliore J, Bakker FT, et al. 2020. Large-scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near-simultaneous evolutionary origin of all six subfamilies. |
| [3] |
Zhang G, Ma H. 2024. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. |
| [4] |
Yang LH, Shi XZ, Wen F, Kang M. 2023. Phylogenomics reveals widespread hybridization and polyploidization in Henckelia (Gesneriaceae). |
| [5] |
Deanna R, Barboza GE, Bohs L, Dodsworth S, Gagnon E, et al. 2025. A new phylogeny and phylogenetic classification for Solanaceae. |
| [6] |
Knowles LL, Huang H, Sukumaran J, Smith SA. 2018. A matter of phylogenetic scale: distinguishing incomplete lineage sorting from lateral gene transfer as the cause of gene tree discord in recent versus deep diversification histories. |
| [7] |
Solís-Lemus C, Yang M, Ané C. 2016. Inconsistency of species tree methods under gene flow. |
| [8] |
Maurin O, Anest A, Bellot S, Biffin E, Brewer G, et al. 2021. A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set. |
| [9] |
Nyffeler R. 2005. Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l.) based on plastid DNA sequences. |
| [10] |
Wang JH, Moore MJ, Wang H, Zhu ZX, Wang HF. 2021. Plastome evolution and phylogenetic relationships among Malvaceae subfamilies. |
| [11] |
Cvetković T, Areces-Berazain F, Hinsinger DD, Thomas DC, Wieringa JJ, et al. 2021. Phylogenomics resolves deep subfamilial relationships in Malvaceae s.l. |
| [12] |
Escobar García P, Schönswetter P, Fuertes Aguilar J, Nieto Feliner G, Schneeweiss GM. 2009. Five molecular markers reveal extensive morphological homoplasy and reticulate evolution in the Malva alliance (Malvaceae). |
| [13] |
Hernández-Gutiérrez R, van den Berg C, Granados Mendoza C, Peñafiel Cevallos M, Freire ME, et al. 2022. Localized phylogenetic discordance among nuclear loci due to incomplete lineage sorting and introgression in the family of cotton and cacao (Malvaceae). |
| [14] |
Baum DA, Dewitt Smith SD, Yen A, Alverson WS, Nyffeler R, et al. 2004. Phylogenetic relationships of Malvatheca (Bombacoideae and Malvoideae; Malvaceae sensu lato) as inferred from plastid DNA sequences. |
| [15] |
Le Péchon T, Gigord LDB. 2014. On the relevance of molecular tools for taxonomic revision in Malvales, Malvaceae s.l., and Dombeyoideae. In Molecular Plant Taxonomy, ed. Besse P. Totowa, NJ: Humana Press. pp. 337−363 doi: 10.1007/978-1-62703-767-9_17 |
| [16] |
Shamso E, Khattab A. 2016. Phenetic relationship between Malvaceae s.s. and its related families. |
| [17] |
Cole TCH, Lei H, Yu WB. 2024. MALVACEAE (MalvPP, Chinese). www.researchgate.net/publication/370818455_jinkuikexitongfayuhaibao-jinkuikedaibiaoshu_MALVACEAE_MalvPP_Chinese_2024 |
| [18] |
Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. |
| [19] |
Colli-Silva M, Pérez-Escobar OA, Ferreira CDM, Costa MTR, Gerace S, et al. 2025. Taxonomy in the light of incongruence: an updated classification of Malvales and Malvaceae based on phylogenomic data. |
| [20] |
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11−15 |
| [21] |
Luo R, Liu B, Xie Y, Li Z, Huang W, et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. |
| [22] |
Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, et al. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. |
| [23] |
Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. |
| [24] |
Darling ACE, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. |
| [25] |
Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, et al. 2017. GeSeq – versatile and accurate annotation of organelle genomes. |
| [26] |
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. |
| [27] |
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. |
| [28] |
Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, et al. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. |
| [29] |
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. |
| [30] |
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. |
| [31] |
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. |
| [32] |
Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, et al. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. |
| [33] |
Baker WJ, Bailey P, Barber V, Barker A, Bellot S, et al. 2022. A comprehensive phylogenomic platform for exploring the angiosperm tree of life. |
| [34] |
Zhang Z, Xie P, Guo Y, Zhou W, Liu E, et al. 2022. Easy353: a tool to get Angiosperms353 genes for phylogenomic research. |
| [35] |
Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. |
| [36] |
Shang HY, Jia KH, Li NW, Zhou MJ, Yang H, et al. 2025. Phytop: a tool for visualizing and recognizing signals of incomplete lineage sorting and hybridization using species trees output from ASTRAL. |
| [37] |
Edelman NB, Frandsen PB, Miyagi M, Clavijo B, Davey J, et al. 2019. Genomic architecture and introgression shape a butterfly radiation. |
| [38] |
Tan X, Qi J, Liu Z, Fan P, Liu G, et al. 2023. Phylogenomics reveals high levels of incomplete lineage sorting at the ancestral nodes of the macaque radiation. |
| [39] |
McLay TGB, Fowler RM, Fahey PS, Murphy DJ, Udovicic F, et al. 2023. Phylogenomics reveals extreme gene tree discordance in a lineage of dominant trees: hybridization, introgression, and incomplete lineage sorting blur deep evolutionary relationships despite clear species groupings in Eucalyptus subgenus Eudesmia. |
| [40] |
Smith SA, Brown JW, Walker JF. 2018. So many genes, so little time: a practical approach to divergence-time estimation in the genomic era. |
| [41] |
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, et al. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. |
| [42] |
Ramírez-Barahona S, Sauquet H, Magallón S. 2020. The delayed and geographically heterogeneous diversification of flowering plant families. |
| [43] |
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using tracer 1.7. |
| [44] |
Chamberlain S, Barve V, McGlinn D, Oldoni D, Desmet P, et al. 2021. rgbif: Interface to the Global Biodiversity Information Facility API. doi: 10.32614/CRAN.package.rgbif |
| [45] |
Matzke NJ. 2013. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. |
| [46] |
Böhnert T, Luebert F, Merklinger FF, Harpke D, Stoll A, et al. 2022. Plant migration under long-lasting hyperaridity–phylogenomics unravels recent biogeographic history in one of the oldest deserts on Earth. |
| [47] |
Yu Y, Harris AJ, Blair C, He X. 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. |
| [48] |
Yao Z, Wang X, Wang K, Yu W, Deng P, et al. 2021. Chloroplast and nuclear genetic diversity explain the limited distribution of endangered and endemic Thuja sutchuenensis in China. |
| [49] |
Witharana EP, Iwasaki T, San MH, Jayawardana NU, Kotoda N, et al. 2025. Subfamily evolution analysis using nuclear and chloroplast data from the same reads. |
| [50] |
Gu X, Li L, Li S, Shi W, Zhong X, et al. 2023. Adaptive evolution and co-evolution of chloroplast genomes in Pteridaceae species occupying different habitats: overlapping residues are always highly mutated. |
| [51] |
Robbins EHJ, Kelly S. 2023. The evolutionary constraints on angiosperm chloroplast adaptation. |
| [52] |
Asar Y, Sauquet H, Ho SYW. 2024. Evolutionary rates of nuclear and organellar genomes are linked in land plants. |
| [53] |
Zhong Y, Bai B, Sun Y, Wen K, Qiao Y, et al. 2024. Comparative genomics and phylogenetic analysis of six Malvaceae species based on chloroplast genomes. |
| [54] |
Rokas A, Williams BL, King N, Carroll SB. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. |
| [55] |
Nakhleh L. 2013. Computational approaches to species phylogeny inference and gene tree reconciliation. |
| [56] |
Liu H, Han B, Mou H, Xiao Y, Jiang Y, et al. 2025. Unraveling the extensive phylogenetic discordance and evolutionary history of spurless taxa within the Aquilegia ecalcarata complex. |
| [57] |
Mallet J, Besansky N, Hahn MW. 2016. How reticulated are species? |
| [58] |
Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. |
| [59] |
Carvalho MR, Herrera FA, Jaramillo CA, Wing SL, Callejas R. 2011. Paleocene Malvaceae from northern South America and their biogeographical implications. |
| [60] |
Long C, Kubatko L. 2018. The effect of gene flow on coalescent-based species-tree inference. |
| [61] |
Conover JL, Karimi N, Stenz N, Ané C, Grover CE, et al. 2019. A Malvaceae mystery: a mallow maelstrom of genome multiplications and maybe misleading methods? |
| [62] |
Le Péchon T, Dai Q, Zhang LB, Gao XF, Sauquet H. 2015. Diversification of Dombeyoideae (Malvaceae) in the Mascarenes: old taxa on young islands? |
| [63] |
McLoughlin S. 2001. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. |
| [64] |
Smith JF, Stevens AC, Tepe EJ, Davidson C. 2008. Placing the origin of two species-rich genera in the late cretaceous with later species divergence in the tertiary: a phylogenetic, biogeographic and molecular dating analysis of Piper and Peperomia (Piperaceae). |
| [65] |
Givnish TJ, Renner SS. 2004. Tropical intercontinental disjunctions: Gondwana breakup, immigration from the boreotropics, and transoceanic dispersal. |
| [66] |
Hoorn C, van der Ham R, de la Parra F, Salamanca S, ter Steege H, et al. 2019. Going north and south: the biogeographic history of two Malvaceae in the wake of Neogene Andean uplift and connectivity between the Americas. |
| [67] |
Stone BW, Wessinger CA. 2024. Ecological diversification in an adaptive radiation of plants: the role of de novo mutation and introgression. |
| [68] |
Swenson U, Hill RS, McLoughlin S. 2001. Biogeography of Nothofagus supports the sequence of Gondwana break-up. |