[1]

Soltis DE, Albert VA, Savolainen V, Hilu K, Qiu YL, et al. 2004. Genome-scale data, angiosperm relationships, and ‘ending incongruence’: a cautionary tale in phylogenetics. Trends in Plant Science 9:477−483

doi: 10.1016/j.tplants.2004.08.008
[2]

Koenen EJM, Ojeda DI, Steeves R, Migliore J, Bakker FT, et al. 2020. Large-scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near-simultaneous evolutionary origin of all six subfamilies. New Phytologist 225:1355−1369

doi: 10.1111/nph.16290
[3]

Zhang G, Ma H. 2024. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. Journal of Integrative Plant Biology 66:546−578

doi: 10.1111/jipb.13609
[4]

Yang LH, Shi XZ, Wen F, Kang M. 2023. Phylogenomics reveals widespread hybridization and polyploidization in Henckelia (Gesneriaceae). Annals of Botany 131:953−966

doi: 10.1093/aob/mcad047
[5]

Deanna R, Barboza GE, Bohs L, Dodsworth S, Gagnon E, et al. 2025. A new phylogeny and phylogenetic classification for Solanaceae. bioRxiv Preprint

doi: 10.1101/2025.07.10.663745
[6]

Knowles LL, Huang H, Sukumaran J, Smith SA. 2018. A matter of phylogenetic scale: distinguishing incomplete lineage sorting from lateral gene transfer as the cause of gene tree discord in recent versus deep diversification histories. American Journal of Botany 105:376−384

doi: 10.1002/ajb2.1064
[7]

Solís-Lemus C, Yang M, Ané C. 2016. Inconsistency of species tree methods under gene flow. Systematic Biology 65:843−851

doi: 10.1093/sysbio/syw030
[8]

Maurin O, Anest A, Bellot S, Biffin E, Brewer G, et al. 2021. A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set. American Journal of Botany 108:1087−1111

doi: 10.1002/ajb2.1699
[9]

Nyffeler R. 2005. Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l.) based on plastid DNA sequences. Organisms Diversity & Evolution 5:109−123

doi: 10.1016/j.ode.2004.08.001
[10]

Wang JH, Moore MJ, Wang H, Zhu ZX, Wang HF. 2021. Plastome evolution and phylogenetic relationships among Malvaceae subfamilies. Gene 765:145103

doi: 10.1016/j.gene.2020.145103
[11]

Cvetković T, Areces-Berazain F, Hinsinger DD, Thomas DC, Wieringa JJ, et al. 2021. Phylogenomics resolves deep subfamilial relationships in Malvaceae s.l. G3 Genes|Genomes|Genetics 11:jkab136

doi: 10.1093/g3journal/jkab136
[12]

Escobar García P, Schönswetter P, Fuertes Aguilar J, Nieto Feliner G, Schneeweiss GM. 2009. Five molecular markers reveal extensive morphological homoplasy and reticulate evolution in the Malva alliance (Malvaceae). Molecular Phylogenetics and Evolution 50:226−239

doi: 10.1016/j.ympev.2008.10.015
[13]

Hernández-Gutiérrez R, van den Berg C, Granados Mendoza C, Peñafiel Cevallos M, Freire ME, et al. 2022. Localized phylogenetic discordance among nuclear loci due to incomplete lineage sorting and introgression in the family of cotton and cacao (Malvaceae). Frontiers in Plant Science 13:850521

doi: 10.3389/fpls.2022.850521
[14]

Baum DA, Dewitt Smith SD, Yen A, Alverson WS, Nyffeler R, et al. 2004. Phylogenetic relationships of Malvatheca (Bombacoideae and Malvoideae; Malvaceae sensu lato) as inferred from plastid DNA sequences. American Journal of Botany 91:1863−1871

doi: 10.3732/ajb.91.11.1863
[15]

Le Péchon T, Gigord LDB. 2014. On the relevance of molecular tools for taxonomic revision in Malvales, Malvaceae s.l., and Dombeyoideae. In Molecular Plant Taxonomy, ed. Besse P. Totowa, NJ: Humana Press. pp. 337−363 doi: 10.1007/978-1-62703-767-9_17

[16]

Shamso E, Khattab A. 2016. Phenetic relationship between Malvaceae s.s. and its related families. Taeckholmia 36:115−135

doi: 10.21608/taec.2016.11956
[17]

Cole TCH, Lei H, Yu WB. 2024. MALVACEAE (MalvPP, Chinese). www.researchgate.net/publication/370818455_jinkuikexitongfayuhaibao-jinkuikedaibiaoshu_MALVACEAE_MalvPP_Chinese_2024

[18]

Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution 24:332−340

doi: 10.1016/j.tree.2009.01.009
[19]

Colli-Silva M, Pérez-Escobar OA, Ferreira CDM, Costa MTR, Gerace S, et al. 2025. Taxonomy in the light of incongruence: an updated classification of Malvales and Malvaceae based on phylogenomic data. Taxon 74:361−385

doi: 10.1002/tax.13300
[20]

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11−15

[21]

Luo R, Liu B, Xie Y, Li Z, Huang W, et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18

doi: 10.1186/2047-217X-1-18
[22]

Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, et al. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21:241

doi: 10.1186/s13059-020-02154-5
[23]

Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31:3350−3352

doi: 10.1093/bioinformatics/btv383
[24]

Darling ACE, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research 14:1394−1403

doi: 10.1101/gr.2289704
[25]

Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, et al. 2017. GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Research 45:W6−W11

doi: 10.1093/nar/gkx391
[26]

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647−1649

doi: 10.1093/bioinformatics/bts199
[27]

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−780

doi: 10.1093/molbev/mst010
[28]

Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, et al. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20:348−355

doi: 10.1111/1755-0998.13096
[29]

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37:1530−1534

doi: 10.1093/molbev/msaa015
[30]

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14:587−589

doi: 10.1038/nmeth.4285
[31]

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35:518−522

doi: 10.1093/molbev/msx281
[32]

Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, et al. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology 68:594−606

doi: 10.1093/sysbio/syy086
[33]

Baker WJ, Bailey P, Barber V, Barker A, Bellot S, et al. 2022. A comprehensive phylogenomic platform for exploring the angiosperm tree of life. Systematic Biology 71:301−319

doi: 10.1093/sysbio/syab035
[34]

Zhang Z, Xie P, Guo Y, Zhou W, Liu E, et al. 2022. Easy353: a tool to get Angiosperms353 genes for phylogenomic research. Molecular Biology and Evolution 39:msac261

doi: 10.1093/molbev/msac261
[35]

Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19:153

doi: 10.1186/s12859-018-2129-y
[36]

Shang HY, Jia KH, Li NW, Zhou MJ, Yang H, et al. 2025. Phytop: a tool for visualizing and recognizing signals of incomplete lineage sorting and hybridization using species trees output from ASTRAL. Horticulture Research 12:uhae330

doi: 10.1093/hr/uhae330
[37]

Edelman NB, Frandsen PB, Miyagi M, Clavijo B, Davey J, et al. 2019. Genomic architecture and introgression shape a butterfly radiation. Science 366:594−599

doi: 10.1126/science.aaw2090
[38]

Tan X, Qi J, Liu Z, Fan P, Liu G, et al. 2023. Phylogenomics reveals high levels of incomplete lineage sorting at the ancestral nodes of the macaque radiation. Molecular Biology and Evolution 40:msad229

doi: 10.1093/molbev/msad229
[39]

McLay TGB, Fowler RM, Fahey PS, Murphy DJ, Udovicic F, et al. 2023. Phylogenomics reveals extreme gene tree discordance in a lineage of dominant trees: hybridization, introgression, and incomplete lineage sorting blur deep evolutionary relationships despite clear species groupings in Eucalyptus subgenus Eudesmia. Molecular Phylogenetics and Evolution 187:107869

doi: 10.1016/j.ympev.2023.107869
[40]

Smith SA, Brown JW, Walker JF. 2018. So many genes, so little time: a practical approach to divergence-time estimation in the genomic era. PLoS One 13:e0197433

doi: 10.1371/journal.pone.0197433
[41]

Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, et al. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15:e1006650

doi: 10.1371/journal.pcbi.1006650
[42]

Ramírez-Barahona S, Sauquet H, Magallón S. 2020. The delayed and geographically heterogeneous diversification of flowering plant families. Nature Ecology & Evolution 4:1232−1238

doi: 10.1038/s41559-020-1241-3
[43]

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Systematic Biology 67:901−904

doi: 10.1093/sysbio/syy032
[44]

Chamberlain S, Barve V, McGlinn D, Oldoni D, Desmet P, et al. 2021. rgbif: Interface to the Global Biodiversity Information Facility API. doi: 10.32614/CRAN.package.rgbif

[45]

Matzke NJ. 2013. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 5:242−248

doi: 10.21425/f5fbg19694
[46]

Böhnert T, Luebert F, Merklinger FF, Harpke D, Stoll A, et al. 2022. Plant migration under long-lasting hyperaridity–phylogenomics unravels recent biogeographic history in one of the oldest deserts on Earth. New Phytologist 234:1863−1875

doi: 10.1111/nph.18082
[47]

Yu Y, Harris AJ, Blair C, He X. 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution 87:46−49

doi: 10.1016/j.ympev.2015.03.008
[48]

Yao Z, Wang X, Wang K, Yu W, Deng P, et al. 2021. Chloroplast and nuclear genetic diversity explain the limited distribution of endangered and endemic Thuja sutchuenensis in China. Frontiers in Genetics 12:658037

doi: 10.3389/fgene.2021.801229
[49]

Witharana EP, Iwasaki T, San MH, Jayawardana NU, Kotoda N, et al. 2025. Subfamily evolution analysis using nuclear and chloroplast data from the same reads. Scientific Reports 15:687

doi: 10.1038/s41598-024-83292-9
[50]

Gu X, Li L, Li S, Shi W, Zhong X, et al. 2023. Adaptive evolution and co-evolution of chloroplast genomes in Pteridaceae species occupying different habitats: overlapping residues are always highly mutated. BMC Plant Biology 23:511

doi: 10.1186/s12870-023-04523-1
[51]

Robbins EHJ, Kelly S. 2023. The evolutionary constraints on angiosperm chloroplast adaptation. Biology and Evolution 15:evad101

doi: 10.1093/gbe/evad101
[52]

Asar Y, Sauquet H, Ho SYW. 2024. Evolutionary rates of nuclear and organellar genomes are linked in land plants. bioRxiv 1−30

doi: 10.1101/2024.08.05.606707
[53]

Zhong Y, Bai B, Sun Y, Wen K, Qiao Y, et al. 2024. Comparative genomics and phylogenetic analysis of six Malvaceae species based on chloroplast genomes. BMC Plant Biology 24:1245

doi: 10.1186/s12870-024-05974-w
[54]

Rokas A, Williams BL, King N, Carroll SB. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798−804

doi: 10.1038/nature02053
[55]

Nakhleh L. 2013. Computational approaches to species phylogeny inference and gene tree reconciliation. Trends in Ecology & Evolution 28:719−728

doi: 10.1016/j.tree.2013.09.004
[56]

Liu H, Han B, Mou H, Xiao Y, Jiang Y, et al. 2025. Unraveling the extensive phylogenetic discordance and evolutionary history of spurless taxa within the Aquilegia ecalcarata complex. New Phytologist 246:1333−1349

doi: 10.1111/nph.70039
[57]

Mallet J, Besansky N, Hahn MW. 2016. How reticulated are species? BioEssays 38:140−149

doi: 10.1002/bies.201500149
[58]

Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97−100

doi: 10.1038/nature09916
[59]

Carvalho MR, Herrera FA, Jaramillo CA, Wing SL, Callejas R. 2011. Paleocene Malvaceae from northern South America and their biogeographical implications. American Journal of Botany 98:1337−1355

doi: 10.3732/ajb.1000539
[60]

Long C, Kubatko L. 2018. The effect of gene flow on coalescent-based species-tree inference. Systematic Biology 67:770−785

doi: 10.1093/sysbio/syy020
[61]

Conover JL, Karimi N, Stenz N, Ané C, Grover CE, et al. 2019. A Malvaceae mystery: a mallow maelstrom of genome multiplications and maybe misleading methods? Journal of Integrative Plant Biology 61:12−31

doi: 10.1111/jipb.12746
[62]

Le Péchon T, Dai Q, Zhang LB, Gao XF, Sauquet H. 2015. Diversification of Dombeyoideae (Malvaceae) in the Mascarenes: old taxa on young islands? International Journal of Plant Sciences 176:211−221

doi: 10.1086/679350
[63]

McLoughlin S. 2001. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany 49:271−300

doi: 10.1071/bt00023
[64]

Smith JF, Stevens AC, Tepe EJ, Davidson C. 2008. Placing the origin of two species-rich genera in the late cretaceous with later species divergence in the tertiary: a phylogenetic, biogeographic and molecular dating analysis of Piper and Peperomia (Piperaceae). Plant Systematics and Evolution 275:9−30

doi: 10.1007/s00606-008-0056-5
[65]

Givnish TJ, Renner SS. 2004. Tropical intercontinental disjunctions: Gondwana breakup, immigration from the boreotropics, and transoceanic dispersal. International Journal of Plant Sciences 165:S1−S6

doi: 10.1086/424022
[66]

Hoorn C, van der Ham R, de la Parra F, Salamanca S, ter Steege H, et al. 2019. Going north and south: the biogeographic history of two Malvaceae in the wake of Neogene Andean uplift and connectivity between the Americas. Review of Palaeobotany and Palynology 264:90−109

doi: 10.1016/j.revpalbo.2019.01.010
[67]

Stone BW, Wessinger CA. 2024. Ecological diversification in an adaptive radiation of plants: the role of de novo mutation and introgression. Molecular Biology and Evolution 41:msae007

doi: 10.1093/molbev/msae007
[68]

Swenson U, Hill RS, McLoughlin S. 2001. Biogeography of Nothofagus supports the sequence of Gondwana break-up. Taxon 50:1025−1041

doi: 10.2307/1224719