[1]

Seraj S, Azargohar R, Dalai AK. 2025. Dry torrefaction and hydrothermal carbonization of biomass to fuel pellets. Renewable and Sustainable Energy Reviews 210:115186

doi: 10.1016/j.rser.2024.115186
[2]

Anoopkumar AN, Reshmy R, Aneesh EM, Madhavan A, Kuriakose LL, et al. 2023. Progress and challenges of Microwave-assisted pretreatment of lignocellulosic biomass from circular bioeconomy perspectives. Bioresource Technology 369:128459

doi: 10.1016/j.biortech.2022.128459
[3]

Li S, Zhang X, Ma P, Li W, Zhang X, et al. 2025. A review of research progress in the compaction of major crop waste by mechanical equipment. Renewable and Sustainable Energy Reviews 213:115484

doi: 10.1016/j.rser.2025.115484
[4]

Liu G, Yang Y, Zhang F. 2025. Reduced urban-rural inequality in household greenhouse gas footprints and rising trade-related inequalities in China. Cities 163:106009

doi: 10.1016/j.cities.2025.106009
[5]

Panda S, Jain MS. 2025. A systematic review of prevalent soy waste management techniques. Renewable and Sustainable Energy Reviews 212:115305

doi: 10.1016/j.rser.2024.115305
[6]

Chen D, Cen K, Gan Z, Zhuang X, Ba Y. 2022. Comparative study of electric-heating torrefaction and solar-driven torrefaction of biomass: characterization of property variation and energy usage with torrefaction severity. Applications in Energy and Combustion Science 9:100051

doi: 10.1016/j.jaecs.2021.100051
[7]

Devaraja UMA, Dissanayake CLW, Gunarathne DS, Chen WH. 2022. Oxidative torrefaction and torrefaction-based biorefining of biomass: a critical review. Biofuel Research Journal 9:1672−96

doi: 10.18331/BRJ2022.9.3.4
[8]

Li Z, Sun W, Zhou H, Zhang M, Fan Y, et al. 2025. Advanced microbial technologies for in-depth studies of microbiologically influenced corrosion and its mitigation. Corrosion Science 256:113211

doi: 10.1016/j.corsci.2025.113211
[9]

Zhang C, Wang M, Chen WHH, Zhang Y, Pétrissans A, et al. 2023. Superhydrophobic and superlipophilic biochar produced from microalga torrefaction and modification for upgrading fuel properties. Biochar 5:18

doi: 10.1007/s42773-023-00217-x
[10]

Valizadeh S, Oh D, Jae J, Pyo S, Jang H, et al. 2022. Effect of torrefaction and fractional condensation on the quality of bio-oil from biomass pyrolysis for fuel applications. Fuel 312:122959

doi: 10.1016/j.fuel.2021.122959
[11]

Wei X, Huang S, Wu Y, Wu S, Yang J. 2022. A comprehensive study on torrefaction of penicillin mycelial residues: analysis of product characteristics and conversion mechanisms of N. Fuel 330:125703

doi: 10.1016/j.fuel.2022.125703
[12]

Bhar R, Tiwari BR, Sarmah AK, Brar SK, Dubey BK. 2022. A comparative life cycle assessment of different pyrolysis-pretreatment pathways of wood biomass for levoglucosan production. Bioresource Technology 356:127305

doi: 10.1016/j.biortech.2022.127305
[13]

Wen C, Liu T, Wang D, Wang Y, Chen H, et al. 2023. Biochar as the effective adsorbent to combustion gaseous pollutants: preparation, activation, functionalization and the adsorption mechanisms. Progress in Energy and Combustion Science 99:101098

doi: 10.1016/j.pecs.2023.101098
[14]

Lee HW, Lee H, Kim YM, Park RS, Park YK. 2019. Recent application of biochar on the catalytic biorefinery and environmental processes. Chinese Chemical Letters 30:2147−2150

doi: 10.1016/j.cclet.2019.05.002
[15]

Yang P, Han Y, Xue L, Gao Y, Liu J, et al. 2024. Effect of lignocellulosic biomass components on the extracellular electron transfer of biochar-based microbe-electrode in microbial electrochemical systems. Journal of Water Process Engineering 59:105013

doi: 10.1016/j.jwpe.2024.105013
[16]

Abdulyekeen KA, Umar AA, Patah MFA, Daud WMAW. 2021. Torrefaction of biomass: production of enhanced solid biofuel from municipal solid waste and other types of biomass. Renewable and Sustainable Energy Reviews 150:111436

doi: 10.1016/j.rser.2021.111436
[17]

Ong HC, Chen WH, Singh Y, Gan YY, Chen CY, et al. 2020. A state-of-the-art review on thermochemical conversion of biomass for biofuel production: a TG-FTIR approach. Energy Conversion and Management 209:112634

doi: 10.1016/j.enconman.2020.112634
[18]

Yang C, Li R, Zhang B, Qiu Q, Wang B, et al. 2019. Pyrolysis of microalgae: a critical review. Fuel Processing Technology 186:53−72

doi: 10.1016/j.fuproc.2018.12.012
[19]

Ponnusamy VK, Nagappan S, Bhosale RR, Lay CH, Duc Nguyen D, et al. 2020. Review on sustainable production of biochar through hydrothermal liquefaction: physico-chemical properties and applications. Bioresource Technology 310:123414

doi: 10.1016/j.biortech.2020.123414
[20]

Punia A, Tatum J, Kostiuk L, Olfert J, Secanell M. 2023. Analysis of methane pyrolysis experiments at high pressure using available reactor models. Chemical Engineering Journal 471:144183

doi: 10.1016/j.cej.2023.144183
[21]

Adeleke AA, Odusote JK, Ikubanni PP, Lasode OA, Malathi M, et al. 2021. Essential basics on biomass torrefaction, densification and utilization. International Journal of Energy Research 45(2):1375−1395

doi: 10.1002/er.5884
[22]

Ramos-Carmona S, Martínez JD, Pérez JF. 2018. Torrefaction of patula pine under air conditions: a chemical and structural characterization. Industrial Crops and Products 118:302−310

doi: 10.1016/j.indcrop.2018.03.062
[23]

Basu P, Sadhukhan AK, Gupta P, Rao S, Dhungana A, et al. 2014. An experimental and theoretical investigation on torrefaction of a large wet wood particle. Bioresource Technology 159:215−222

doi: 10.1016/j.biortech.2014.02.105
[24]

Qian S, Zhou X, Fu Y, Song B, Yan H, et al. 2023. Biochar-compost as a new option for soil improvement: application in various problem soils. Science of The Total Environment 870:162024

doi: 10.1016/j.scitotenv.2023.162024
[25]

Costa PA, Barreiros MA, Mouquinho AI, Oliveira e Silva P, Paradela F, et al. 2022. Slow pyrolysis of cork granules under nitrogen atmosphere: by-products characterization and their potential valorization. Biofuel Research Journal 9:1562−1572

doi: 10.18331/BRJ2022.9.1.3
[26]

Zhang C, Yang W, Chen WH, Ho SH, Pétrissans A, et al. 2022. Effect of torrefaction on the structure and reactivity of rice straw as well as life cycle assessment of torrefaction process. Energy 240:122470

doi: 10.1016/j.energy.2021.122470
[27]

Li L, Huang Y, Zhang D, Zheng A, Zhao Z, et al. 2018. Uncovering structure–reactivity relationships in pyrolysis and gasification of biomass with varying severity of torrefaction. ACS Sustainable Chemistry & Engineering 6:6008−6017

doi: 10.1021/acssuschemeng.7b04649
[28]

Neupane S, Adhikari S, Wang Z, Ragauskas AJ, Pu Y. 2015. Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis. Green Chemistry 17:2406−2417

doi: 10.1039/C4GC02383H
[29]

Ma Z, Zhang Y, Shen Y, Wang J, Yang Y, et al. 2019. Oxygen migration characteristics during bamboo torrefaction process based on the properties of torrefied solid, gaseous, and liquid products. Biomass and Bioenergy 128:105300

doi: 10.1016/j.biombioe.2019.105300
[30]

Li M, Wang H, Huang Z, Yuan X, Tan M, et al. 2020. Comparison of atmospheric pressure and gas-pressurized torrefaction of municipal sewage sludge: properties of solid products. Energy Conversion and Management 213:112793

doi: 10.1016/j.enconman.2020.112793
[31]

Zhang C, Wang M, Chen WH, Pétrissans A, Pétrissans M, et al. 2022. A comparison of conventional and oxidative torrefaction of microalga Nannochloropsis Oceanica through energy efficiency analysis and life cycle assessment. Journal of Cleaner Production 369:133236

doi: 10.1016/j.jclepro.2022.133236
[32]

González-Arias J, Gómez X, González-Castaño M, Sánchez ME, Rosas JG, et al. 2022. Insights into the product quality and energy requirements for solid biofuel production: a comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning. Energy 238:122022

doi: 10.1016/j.energy.2021.122022
[33]

Chen WH, Du JT, Lee KT, Ong HC, Park YK, et al. 2021. Pore volume upgrade of biochar from spent coffee grounds by sodium bicarbonate during torrefaction. Chemosphere 275:129999

doi: 10.1016/j.chemosphere.2021.129999
[34]

Liu X, Yuan L, Yang X. 2021. Evolution of chemical functional groups during torrefaction of rice straw. Bioresource Technology 320:124328

doi: 10.1016/j.biortech.2020.124328
[35]

Gan YY, Chen WH, Ong HC, Lin YY, Sheen HK, et al. 2021. Effect of wet torrefaction on pyrolysis kinetics and conversion of microalgae carbohydrates, proteins, and lipids. Energy Conversion and Management 227:113609

doi: 10.1016/j.enconman.2020.113609
[36]

Arpia AA, Chen WH, Lam SS, Rousset P, de Luna MDG. 2021. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: a comprehensive review. Chemical Engineering Journal 403:126233

doi: 10.1016/j.cej.2020.126233
[37]

Li X, Lu Z, Chen J, Chen X, Jiang Y, et al. 2021. Effect of oxidative torrefaction on high temperature combustion process of wood sphere. Fuel 286:119379

doi: 10.1016/j.fuel.2020.119379
[38]

Zhang C, Fang J, Chen WH, Kwon EE, Zhang Y. 2024. Effects of water washing and KOH activation for upgrading microalgal torrefied biochar. Science of The Total Environment 921:171254

doi: 10.1016/j.scitotenv.2024.171254
[39]

Zhang X, Guo W, Pan J, Zhu C, Deng S. 2024. In-situ pyrolysis of oil shale in pressured semi-closed system: insights into products characteristics and pyrolysis mechanism. Energy 286:129608

doi: 10.1016/j.energy.2023.129608
[40]

Wang Q, Zhang X, Cui D, Sun S, Wang Z, et al. 2023. Effect of pressure on the pyrolysis and gasification mechanism of corn stovers from kinetics. Journal of Analytical and Applied Pyrolysis 176:106267

doi: 10.1016/j.jaap.2023.106267
[41]

Mohamed BA, O'Boyle M, Li LY. 2023. Co-pyrolysis of sewage sludge with lignocellulosic and algal biomass for sustainable liquid and gaseous fuel production: a life cycle assessment and techno-economic analysis. Applied Energy 346:121318

doi: 10.1016/j.apenergy.2023.121318
[42]

Zhang C, Ho SH, Chen WH, Wang R. 2021. Comparative indexes, fuel characterization and thermogravimetric- Fourier transform infrared spectrometer-mass spectrogram (TG-FTIR-MS) analysis of microalga Nannochloropsis Oceanica under oxidative and inert torrefaction. Energy 230:120824

doi: 10.1016/j.energy.2021.120824
[43]

Wang K, Wang Y, Zhang S, Chen YD, Wang R, et al. 2022. Tailoring a novel hierarchical cheese-like porous biochar from algae residue to boost sulfathiazole removal. Environmental Science and Ecotechnology 10:100168

doi: 10.1016/j.ese.2022.100168
[44]

Ji R, Wu Y, Bian Y, Song Y, Sun Q, et al. 2021. Nitrogen-doped porous biochar derived from marine algae for efficient solid-phase microextraction of chlorobenzenes from aqueous solution. Journal of Hazardous Materials 407:124785

doi: 10.1016/j.jhazmat.2020.124785
[45]

Zhang S, Su Y, Xiong Y, Zhang H. 2020. Physicochemical structure and reactivity of char from torrefied rice husk: effects of inorganic species and torrefaction temperature. Fuel 262:116667

doi: 10.1016/j.fuel.2019.116667
[46]

Bao Z, Lotfy VF, Zhou X, Fu S, Basta AH. 2024. Assessment of porous carbon from rice straw residues with potassium ferrate-assisted activation as cationic and anionic dye adsorbents. Industrial Crops and Products 212:118298

doi: 10.1016/j.indcrop.2024.118298
[47]

Zoroufchi Benis K, Soltan J, McPhedran KN. 2022. A novel method for fabrication of a binary oxide biochar composite for oxidative adsorption of arsenite: characterization, adsorption mechanism and mass transfer modeling. Journal of Cleaner Production 356:131832

doi: 10.1016/j.jclepro.2022.131832
[48]

Liu M, Tan X, Zheng M, Yu D, Lin A, et al. 2023. Modified biochar/humic substance/fertiliser compound soil conditioner for highly efficient improvement of soil fertility and heavy metals remediation in acidic soils. Journal of Environmental Management 325:116614

doi: 10.1016/j.jenvman.2022.116614
[49]

Mi X, Ma R, Pu X, Fu X, Geng M, et al. 2022. FeNi-layered double hydroxide (LDH)@biochar composite for , activation of peroxymonosulfate (PMS) towards enhanced degradation of doxycycline (DOX): characterizations of the catalysts, catalytic performances, degradation pathways and mechanisms. Journal of Cleaner Production 378:134514

doi: 10.1016/j.jclepro.2022.134514
[50]

Chen Y, Yang Y, Ren N, Duan X. 2023. Single-atom catalysts derived from biomass: low-cost and high-performance persulfate activators for water decontamination. Current Opinion in Chemical Engineering 41:100942

doi: 10.1016/j.coche.2023.100942
[51]

Hu J, Zhao L, Luo J, Gong H, Zhu N. 2022. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: modifications, applications and perspectives. Journal of Hazardous Materials 438:129437

doi: 10.1016/j.jhazmat.2022.129437
[52]

Caputo HE, Straub JE, Grinstaff MW. 2019. Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides. Chemical Society Reviews 48(8):2338−2365

doi: 10.1039/C7CS00593H
[53]

Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, et al. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805−809

doi: 10.1126/science.1200165
[54]

Wu P, Xie M, Clough TJ, Yuan D, Wu S, et al. 2023. Biochar-derived persistent free radicals and reactive oxygen species reduce the potential of biochar to mitigate soil N2O emissions by inhibiting nosZ. Soil Biology and Biochemistry 178:108970

doi: 10.1016/j.soilbio.2023.108970
[55]

Nanda OP, Maji B, Badhulika S. 2025. Photonic-electrochemical integration using carbon quantum dots decorated WSe2 for light-driven sustainable energy storage in solid-state photosupercapacitors. Journal of Alloys and Compounds 1046:184758

doi: 10.1016/j.jallcom.2025.184758
[56]

Zhang M, Ye J, Zhang J, Tian Z, Gan L, et al. 2025. Porphyrinized carbon quantum dots: a novel antibacterial nanomaterial for visualized and broad-spectrum treatment of drug-resistant infected wounds. Chemical Engineering Journal 522:166981

doi: 10.1016/j.cej.2025.166981
[57]

Wu Y, Li Y, Guo H, Yang Q, Yan M, et al. 2025. Dual biomass-derived CQDs/Ag co-catalysts synergistically assisted Cu2O for efficient tetracycline hydrochloride photocatalytic degradation: performance and mechanism insights. Chinese Journal of Chemical Engineering 88:85−95

doi: 10.1016/j.cjche.2025.06.029
[58]

Chen YW, Lee HV, Juan JC, Phang SM. 2016. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydrate Polymers 151:1210−1219

doi: 10.1016/j.carbpol.2016.06.083
[59]

Chen WH, Lin BJ, Lin YY, Chu YS, Ubando AT, et al. 2021. Progress in biomass torrefaction: principles, applications and challenges. Progress in Energy and Combustion Science 82:100887

doi: 10.1016/j.pecs.2020.100887
[60]

Dharmasiri B, Charles ADM, Farnsworth AL, Giansiracusa MJ, Boskovic C, et al. 2025. "Magnetic carbon fibre" for multifunctional composites with improved recyclability. Chemical Engineering Journal 524:169250

doi: 10.1016/j.cej.2025.169250
[61]

Shu R, Ding X, Xu L, Tian K. 2025. Synthesis of chitosan derived carbon-based magnetic composite aerogels with a unique three-dimensional porous network structure as eco-friendly and high-efficiency electromagnetic wave absorbers. Materials Today Chemistry 49:103120

doi: 10.1016/j.mtchem.2025.103120
[62]

Li Y, Zhao S, Wei G, Shang L, Li J, et al. 2026. Magnetic activated carbon composites for adsorptive removal of dioxin. Materials Chemistry and Physics 348:131540

doi: 10.1016/j.matchemphys.2025.131540
[63]

Guo S, Tan S, Zhang X, Huang X, Ji G. 2025. Pyramid-like magnetic carbon composites device toward tunable and adaptive radar-visible compatible properties. Carbon 231:119737

doi: 10.1016/j.carbon.2024.119737
[64]

Zhang X, Cai X, Hu X, Zong C, Lin H, et al. 2025. Magnesium-enriched biochar as a multifunctional carrier: unlocking productivity and stability in the algal-bacterial symbiosis system. Chemical Engineering Journal 524:169278

doi: 10.1016/j.cej.2025.169278
[65]

Qu J, Shi J, Wang Y, Tong H, Zhu Y, et al. 2022. Applications of functionalized magnetic biochar in environmental remediation: a review. Journal of Hazardous Materials 434:128841

doi: 10.1016/j.jhazmat.2022.128841
[66]

Wei Z, Li H, Jia M, Lin T. 2023. NaOH–ball-milled co-modified magnetic biochar and its oil adsorption properties. Particuology 83:40−49

doi: 10.1016/j.partic.2023.02.005
[67]

Zhou S, Cai L, Cheng Y, Zhang Y, Zhao Y, et al. 2026. Cocklebur-inspired magnetic nanomotors for targeted thrombus therapy. Bioactive Materials 55:290−301

doi: 10.1016/j.bioactmat.2025.09.029
[68]

Yuwen L, Liu Y, Zhang Q, Xu X, Lu L, et al. 2025. Magnetic field-targeting and ultrasound-responsive antibiotic delivery for enhanced penetration and eradication of bacterial biofilms. Journal of Controlled Release 386:114152

doi: 10.1016/j.jconrel.2025.114152
[69]

Geng Y, Li H, Yao J, Niu K, Naik MUD, et al. 2023. Novel preparation of nano-SiO2 core-shell hybrid inorganic-organic sizing agents for enhanced interfacial and mechanical properties of carbon fibers/epoxy composites. Composite Structures 319:117086

doi: 10.1016/j.compstruct.2023.117086
[70]

Jia H, Qiao Y, Zhang Y, Liu C, Jian X. 2023. Excellent and effective interfacial transition layer with an organic/inorganic hybrid carbon nanotube network structure for basalt fiber reinforced high-performance thermoplastic composites. Chemical Engineering Journal 465:142995

doi: 10.1016/j.cej.2023.142995
[71]

Huang C, Alshahrani DO, Khan H. 2025. Green sol-gel synthesis of MnSeO4 using okra extract for enhanced electrochemical energy storage. Results in Chemistry 18:102825

doi: 10.1016/j.rechem.2025.102825
[72]

Sharma S, Goyal P. 2025. Sol-gel synthesis of manganese and potassium substituted hydroxyapatite: characterization and thermal behavior. Results in Chemistry 18:102774

doi: 10.1016/j.rechem.2025.102774
[73]

Yuan H, Jiao Q, Zhang S, Zhao Y, Wu Q, et al. 2016. In situ chemical vapor deposition growth of carbon nanotubes on hollow CoFe2O4 as an efficient and low cost counter electrode for dye-sensitized solar cells. Journal of Power Sources 325:417−426

doi: 10.1016/j.jpowsour.2016.06.052
[74]

Xiao L, Wang Y, Zhou X, Shao J, Huang Q, et al. 2026. A novel isotropic carbon rapidly prepared by catalytic chemical vapor infiltration serves as a conductive and wear-resistant material. Tribology International 214:111257

doi: 10.1016/j.triboint.2025.111257
[75]

Pelanconi M, Bottacin S, Bianchi G, Viganò D, Papageorgiou V, et al. 2026. TPMS SiC structures produced by chemical vapour infiltration of SiC preforms shaped by powder bed fusion and binder jetting: a preliminary study on the early stages of the CVI process. Journal of the European Ceramic Society 46:117809

doi: 10.1016/j.jeurceramsoc.2025.117809
[76]

Amer M, Nour M, Ahmed M, Ookawara S, Nada S, et al. 2019. The effect of microwave drying pretreatment on dry torrefaction of agricultural biomasses. Bioresource Technology 286:121400

doi: 10.1016/j.biortech.2019.121400
[77]

Song R, Zhao G, Restrepo-Flórez JM, Viasus Pérez CJ, Chen Z, et al. 2024. Ethylene production via photocatalytic dehydrogenation of ethane using LaMn1−xCuxO3. Nature Energy 9:750−760

doi: 10.1038/s41560-024-01541-7
[78]

Wang X, Ding H, Wang C, Zhou R, Li Y, et al. 2021. Self-healing superhydrophobic A-SiO2/N-TiO2@HDTMS coating with self-cleaning property. Applied Surface Science 567:150808

doi: 10.1016/j.apsusc.2021.150808
[79]

Wang Y, Wang Z, Wu L, Li H, Li J, et al. 2024. Effects of grazing and climate change on aboveground standing biomass and sheep live weight changes in the desert steppe in Inner Mongolia, China. Agricultural Systems 217:103916

doi: 10.1016/j.agsy.2024.103916
[80]

Chakravorty P, Badwaik LS, Das AB. 2026. Impact of extrusion cooking on tree bean (Parkia timoriana) seed protein emulsion gels with natural deep eutectic solvents and its use as an extrusion-based 3D food printing ink. Journal of Food Engineering 403:112722

doi: 10.1016/j.jfoodeng.2025.112722
[81]

Zhang C, Chen WH, Saravanakumar A, Lin KYA, Zhang Y. 2024. Comparison of torrefaction and hydrothermal carbonization of high-moisture microalgal feedstock. Renewable Energy 225:120265

doi: 10.1016/j.renene.2024.120265
[82]

Zhao H, Zhang Z, Yu H, Wu D, Wang H, et al. 2025. Single-atom cobalt anchored biochar/PVDF membrane for antibiotic removal via coupling membrane filtration and sulfate-based advanced oxidation processes. Environmental Research 282:122097

doi: 10.1016/j.envres.2025.122097
[83]

Gong R, Li H, Liu Y, Fu J, Yi J, et al. 2025. Preparation of novel multifunctional magnetic biochar integrating adsorption and degradation and application in printing and dyeing wastewater. Journal of Contaminant Hydrology 274:104652

doi: 10.1016/j.jconhyd.2025.104652
[84]

Pan J, Gao B, Duan P, Guo K, Xu X, et al. 2021. Recycling exhausted magnetic biochar with adsorbed Cu2+ as a cost-effective permonosulfate activator for norfloxacin degradation: Cu contribution and mechanism. Journal of Hazardous Materials 413:125413

doi: 10.1016/j.jhazmat.2021.125413
[85]

Boukhouidem K, Slimani A, Derkaoui K, Manfo TA, Hadjersi T, et al. 2025. Ternary WO3–MnO2@SiNWs hybrid electrodes for high-performance Micro-supercapacitors with enhanced energy density and stability. Journal of Electroanalytical Chemistry 999:119559

doi: 10.1016/j.jelechem.2025.119559
[86]

Hwang H, Ajaz AM, Fakhar A, Choi JW. 2026. Fabrication of moisture diffusion energy harvesters with oak mushroom logwood biochar for sensor operation, capacitor storage and structure performance relationships. Biomass and Bioenergy 204:108436

doi: 10.1016/j.biombioe.2025.108436
[87]

Chen P, Xia Y, Wu Y, Wu X, Wang Y, et al. 2025. 3D-printed scaffolds with ROS-clearing capacity for critical-sized bone defect regeneration. Biomaterials Advances 180:214575

doi: 10.1016/j.bioadv.2025.214575
[88]

Guo X, Su Y, Wu Z, Wu Z, Liu K, et al. 2025. Dual-functional 3D-printed polyetheretherketone scaffolds with immunomodulatory nano-calcium silicate/interleukin-4 coating synergistically enhance osteogenesis through macrophage M2 polarization and NF-κB pathway suppression. Chemical Engineering Journal 525:170004

doi: 10.1016/j.cej.2025.170004
[89]

Zhang C, Chen WH, Ho SH. 2021. Elemental loss, enrichment, transformation and life cycle assessment of torrefied corncob. Energy 242:123019

doi: 10.1016/j.energy.2021.123019
[90]

Zhao F, Lin L, Zhang J, Liu J. 2024. Construction of anchoring MnO2 on wood-derived integral nitrogen-doped carbon electrode for high-performance supercapacitors. Journal of Energy Storage 95:112631

doi: 10.1016/j.est.2024.112631
[91]

Senthilkumar AK, Kumar M, Chen CL, Murugan S, Ho MS, et al. 2024. A novel chemical-free porous carbon micro-rods derived from used wooden chopsticks (CS) for solid-state symmetric supercapacitor device. Diamond and Related Materials 141:110732

doi: 10.1016/j.diamond.2023.110732
[92]

Boopathi G, Ragavan R, Jaimohan SM, Sagadevan S, Kim I, et al. 2024. Mesoporous graphitic carbon electrodes derived from boat-fruited shells of Sterculia Foetida for symmetric supercapacitors for energy storage applications. Chemosphere 348:140650

doi: 10.1016/j.chemosphere.2023.140650
[93]

Guo Y, Liu C, Yin LX, Zhang XX, Shan YQ, et al. 2023. Preparation of supercapacitor carbon materials from food waste via low-temperature pyrolysis. Journal of Analytical and Applied Pyrolysis 170:105880

doi: 10.1016/j.jaap.2023.105880
[94]

Song Y, Qu W, He Y, Yang H, Du M, et al. 2020. Synthesis and processing optimization of N-doped hierarchical porous carbon derived from corncob for high performance supercapacitors. Journal of Energy Storage 32:101877

doi: 10.1016/j.est.2020.101877
[95]

Taer E, Apriwandi A, Taslim R, Agutino A, Yusra DA. 2020. Conversion Syzygium oleana leaves biomass waste to porous activated carbon nanosheet for boosting supercapacitor performances. Journal of Materials Research and Technology 9:13332−13340

doi: 10.1016/j.jmrt.2020.09.049
[96]

Okonkwo CA, Menkiti MC, Obiora-Okafo IA, Ezenwa ON. 2021. Controlled pyrolysis of sugarcane bagasse enhanced mesoporous carbon for improving capacitance of supercapacitor electrode. Biomass and Bioenergy 146:105996

doi: 10.1016/j.biombioe.2021.105996
[97]

Hummadi KK, Luo S, He S. 2022. Adsorption of methylene blue dye from the aqueous solution via bio-adsorption in the inverse fluidized-bed adsorption column using the torrefied rice husk. Chemosphere 287:131907

doi: 10.1016/j.chemosphere.2021.131907
[98]

Maiti P, Meikap BC. 2025. Mechanism and adsorptive removal of Pb (II) by torrefied/pyrolyzed functionalized bio-adsorbent in batch application and life cycle assessment. Separation and Purification Technology 354:129333

doi: 10.1016/j.seppur.2024.129333
[99]

Gao X, Tan M, Jiang S, Huang Z, Li C, et al. 2021. Pyrolysis of torrefied rice straw from gas-pressurized and oxidative torrefaction: pyrolysis kinetic analysis and the properties of biochars. Journal of Analytical and Applied Pyrolysis 157:105238

doi: 10.1016/j.jaap.2021.105238