[1]

Sarkar M, Hossain R, Sahajwalla V. 2024. Sustainable recovery and resynthesis of electroactive materials from spent Li-ion batteries to ensure material sustainability. Resources, Conservation and Recycling 200:107292

doi: 10.1016/j.resconrec.2023.107292
[2]

Liu Y, Jiao B, Guo X, Li S, Lou X, et al. 2024. Retrieving lost Li in LIBs for co-regeneration of spent anode and cathode materials. Energy Storage Materials 72:103684

doi: 10.1016/j.ensm.2024.103684
[3]

Espinoza-Acosta JL, Torres-Chávez PI, Olmedo-Martínez JL, Vega-Rios A, Flores-Gallardo S, et al. 2018. Lignin in storage and renewable energy applications: a review. Journal of Energy Chemistry 27:1422−1438

doi: 10.1016/j.jechem.2018.02.015
[4]

Tang Q, Qian Y, Yang D, Qiu X, Qin Y, et al. 2020. Lignin-based nanoparticles: a review on their preparations and applications. Polymers 12:2471

doi: 10.3390/polym12112471
[5]

Cao D, Zhang Q, Hafez AM, Jiao Y, Ma Y, et al. 2019. Lignin-derived holey, layered, and thermally conductive 3D scaffold for lithium dendrite suppression. Small Methods 3:1800539

doi: 10.1002/smtd.201800539
[6]

Zhang P, Zhang G, Liu Y, Fan Y, Shi X, et al. 2024. Constructing P2/O3 biphasic structure of Fe/Mn-based layered oxide cathode for high-performance sodium-ion batteries. Journal of Colloid and Interface Science 654:1405−1416

doi: 10.1016/j.jcis.2023.10.129
[7]

Zeng Z, Mao Y, Hu Z, Chen K, Huang Q, et al. 2023. Research progress and commercialization of biologically derived hard carbon anode materials for sodium-ion batteries. Industrial & Engineering Chemistry Research 62:15343−15359

doi: 10.1021/acs.iecr.3c00818
[8]

Sun Z, Zhao C, Cao X, Zeng K, Ma Z, et al. 2020. Insights into the phase transformation of NiCo2S4@rGO for sodium-ion battery electrode. Electrochimica Acta 338:135900

doi: 10.1016/j.electacta.2020.135900
[9]

Xi JC, Yuan YF, Yang JL, Chen YB, Shen SH, et al. 2024. NiCo2S4 nanoparticles encapsulated within hollow mesoporous carbon spheres enabling rapid and stable sodium storage. Journal of Energy Storage 102:114216

doi: 10.1016/j.est.2024.114216
[10]

Jiang Z, Xu Z, Li L, Wei J, Liu Q, et al. 2025. Design principles for efficient hydrothermal relithiation of spent lithium iron phosphate. ACS Applied Materials & Interfaces 17:4875−4883

doi: 10.1021/acsami.4c17326
[11]

Dun C, Zhang P, Liu Y, Lv H, Liang R, et al. 2024. Effect of polypyrrole-derived N-doped carbon coating on the sodium storage properties of NiCo2S4 synthesized by recycling discarded mobile phone batteries. Ceramics International 50:32717−32726

doi: 10.1016/j.ceramint.2024.06.081
[12]

Wang S, Pang X, Huang D, Zhang M, Hu S, et al. 2025. Construction of Co9S8@C-MoS2 heterostructure for fast charging and superior long-term cycling performance of sodium ion batteries. Journal of Colloid and Interface Science 680:398−406

doi: 10.1016/j.jcis.2024.11.010
[13]

Liao C, Hou Y, Han L, Zhu Y, Wang H, et al. 2022. Expandable nitrogen-doped carbon-based anodes fabricated from self-sacrificial metal-organic frameworks for ultralong-life lithium storage. Carbon 186:46−54

doi: 10.1016/j.carbon.2021.10.005
[14]

Wang H, Hu L, Wang C, Sun Q, Li H, et al. 2019. High-loading individually dispersed NiCo2O4 anchoring on checkerboard-like C/CNT nanosheets as a binder-free high rate electrode for lithium storage. Journal of Materials Chemistry A 7:3632−3641

doi: 10.1039/C8TA12196F
[15]

Zhu YL, Wang YX, Gao C, Zhao WN, Wang XB, et al. 2020. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage. New Carbon Materials 35:358−370

doi: 10.1016/S1872-5805(20)60494-2
[16]

Jeon Y, Lee J, Jo H, Hong H, Lee LYS, et al. 2021. Co/Co3O4-embedded N-doped hollow carbon composite derived from a bimetallic MOF/ZnO Core-shell template as a sulfur host for Li-S batteries. Chemical Engineering Journal 407:126967

doi: 10.1016/j.cej.2020.126967
[17]

Zhang W, Lan C, Xie X, Cao Q, Zheng M, et al. 2019. Facile construction of hollow carbon nanosphere-interconnected network for advanced sodium-ion battery anode. Journal of Colloid and Interface Science 546:53−59

doi: 10.1016/j.jcis.2019.03.043
[18]

Niitani K, Ushiroda S, Kuwata H, Hozumi M, Matsunaga T, et al. 2024. Communication—high-capacity hard carbons enabled by a sodium carborane solid electrolyte for sodium-ion batteries. Journal of The Electrochemical Society 171:010511

doi: 10.1149/1945-7111/ad1acc
[19]

Ud Din MA, Irfan S, Jamil S, Dar SU, Khan QU, et al. 2022. Graphene-like ultrathin bismuth selenide nanosheets as highly stable anode material for sodium-ion battery. Journal of Alloys and Compounds 901:163572

doi: 10.1016/j.jallcom.2021.163572
[20]

Yan J, Li Q, Hao Y, Dai C, Chen Y. 2020. MoS2/SnS2 nanocomposite as stable sodium-ion battery anode. Functional Materials Letters 13:1950095

doi: 10.1142/S1793604719500954
[21]

Wu W, Zhao C, Wang C, Liu T, Wang L, et al. 2021. Hierarchical structure of Self-Supported NiCo2S4 Nanoflowers@NiCo2S4 nanosheets as high rate-capability and cycling-stability electrodes for advanced supercapacitor. Applied Surface Science 563:150324

doi: 10.1016/j.apsusc.2021.150324
[22]

Cai K, Li Y, Lang X, Li L, Zhang Q. 2019. Synergistic effect of sulfur on electrochemical performances of carbon-coated vanadium pentoxide cathode materials with polyvinyl alcohol as carbon source for lithium-ion batteries. International Journal of Energy Research 43:7664−7671

doi: 10.1002/er.4722
[23]

Cai F, Sun C, Sun Z, Lai Y, Ding H. 2023. Sulfur-functionalized CoMn2O4 as a Fenton-like catalyst for the efficient rhodamine B degradation. Applied Surface Science 623:157044

doi: 10.1016/j.apsusc.2023.157044
[24]

Zhang C, Xie Z, Yang W, Liang Y, Meng D, et al. 2020. NiCo2O4/biomass-derived carbon composites as anode for high-performance lithium ion batteries. Journal of Power Sources 451:227761

doi: 10.1016/j.jpowsour.2020.227761
[25]

Lu X, Liu A, Zhang Y, Liu S. 2020. Space-confined synthesis of yolk–shell structured Co3O4/nitrogen-doped carbon nanocomposites with hollow mesoporous carbon nanocages as advanced functional anodes for lithium-ion batteries. ACS Applied Energy Materials 3:11153−11163

doi: 10.1021/acsaem.0c02098
[26]

Jiao X, Cai L, Xia X, Lei W, Hao Q, et al. 2019. Novel spinel nanocomposites of NixCo1−xFe2O4 nanoparticles with N-doped graphene for lithium ion batteries. Applied Surface Science 481:200−208

doi: 10.1016/j.apsusc.2019.03.063
[27]

Gong Y, Sun L, Si H, Zhang Y, Shi Y, et al. 2020. MnO nanorods coated by co-decorated N-doped carbon as anodes for high performance lithium ion batteries. Applied Surface Science 504:144479

doi: 10.1016/j.apsusc.2019.144479
[28]

Sun J, Gunathilaka IE, O'dell LA, Howlett PC, Forsyth M. 2023. High-rate formation protocol enables a high ionic conductivity SEI for sodium-ion batteries. Journal of Power Sources 554:232298

doi: 10.1016/j.jpowsour.2022.232298
[29]

Liu Y, Que X, Wu X, Yuan Q, Wang H, et al. 2020. ZIF-67 derived carbon wrapped discontinuous CoxP nanotube as anode material in high-performance Li-ion battery. Materials Today Chemistry 17:100284

doi: 10.1016/j.mtchem.2020.100284
[30]

Lu X, Liu A, Zhang Y, Liu S. 2021. A yolk-shell structured CoS2@NC@CNC with double carbon shell coating from confined derivatization of ZIF-67 growth in carbon nanocages for superior Li storage. Electrochimica Acta 371:137773

doi: 10.1016/j.electacta.2021.137773
[31]

Zhang P, Feng Y, Cao M, Yao J. 2020. Construction of sandwich-type Co9S8-C anchored on carbonized melamine foam toward lithium-ion battery. Electrochimica Acta 363:137220

doi: 10.1016/j.electacta.2020.137220
[32]

Gou H, Li W, Yang Y, Li X, Cui H, et al. 2021. Porous skeleton-stabilized Co/N–C coated separator for boosting lithium-ion batteries stability and safety. Journal of Power Sources 499:229933

doi: 10.1016/j.jpowsour.2021.229933
[33]

Hu L, Zheng S, Cheng S, Chen Z, Huang B, et al. 2019. CrPO4/C composite as a novel anode material for lithium-ion batteries. Journal of Power Sources 441:227180

doi: 10.1016/j.jpowsour.2019.227180
[34]

Li Y, Meng Y, Liu X, Xiao M, Hu Q, et al. 2019. Double-protected zinc ferrite nanospheres as high rate and stable anode materials for lithium ion batteries. Journal of Power Sources 442:227256

doi: 10.1016/j.jpowsour.2019.227256
[35]

Miao Y, Zhao X, Wang X, Ma C, Cheng L, et al. 2020. Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries. Nano Research 13:3041−3047

doi: 10.1007/s12274-020-2969-4
[36]

Mubasher, Mumtaz M, Hassan M, Ullah S, Ahmad Z. 2021. Nanohybrids of multi-walled carbon nanotubes and cobalt ferrite nanoparticles: high performance anode material for lithium-ion batteries. Carbon 171:179−187

doi: 10.1016/j.carbon.2020.08.080
[37]

Li H, Luo J, Han D, Liu A, Zhou M, et al. 2023. Layer-by-layer hetero-carbon modifying ZnS nanocubes anode with improved long-term life for sodium-ion batteries. Ceramics International 49:18421−18431

doi: 10.1016/j.ceramint.2023.02.214
[38]

Zhang LL, Ma D, Li T, Liu J, Ding XK, et al. 2018. Polydopamine-derived nitrogen-doped carbon-covered Na3V2(PO4)2F3 cathode material for high-performance Na-ion batteries. ACS Applied Materials & Interfaces 10:36851−36859

doi: 10.1021/acsami.8b10299
[39]

Lim YV, Huang S, Wu Q, Kong D, Wang Y, et al. 2020. Super kinetically pseudocapacitive MnCo2S4 nanourchins toward high-rate and highly stable sodium-ion storage. Advanced Functional Materials 30:1909702

doi: 10.1002/adfm.201909702
[40]

Chen H, Tian P, Fu L, Wan S, Liu Q. 2022. Hollow spheres of solid solution Fe7Ni3S11/CN as advanced anode materials for sodium ion batteries. Chemical Engineering Journal 430:132688

doi: 10.1016/j.cej.2021.132688
[41]

Yan W, Liang K, Chi Z, Liu T, Cao M, et al. 2021. Litchi-like structured MnCo2S4@C as a high capacity and long-cycling time anode for lithium-ion batteries. Electrochimica Acta 376:138035

doi: 10.1016/j.electacta.2021.138035
[42]

Wang J, Yue X, Liu Z, Xie Z, Zhao Q, et al. 2022. Trimetallic sulfides derived from tri-metal-organic frameworks as anode materials for advanced sodium ion batteries. Journal of Colloid and Interface Science 625:248−256

doi: 10.1016/j.jcis.2022.06.022
[43]

Gong J, Luo W, Zhao Y, Xie M, Wang J, et al. 2022. Co9S8/NiCo2S4 core-shell array structure cathode hybridized with PPy/MnO2 core-shell structure anode for high-performance flexible quasi-solid-state alkaline aqueous batteries. Chemical Engineering Journal 434:134640

doi: 10.1016/j.cej.2022.134640
[44]

Lv H, Zhou C, Shen Q, Kong Y, Wan B, et al. 2025. Rationally designed CaTiO3/Mn0.5Cd0.5S/Ni3C S-scheme/Schottky integrated heterojunction for efficient photocatalytic H2 evolution. Journal of Colloid and Interface Science 677:365−376

doi: 10.1016/j.jcis.2024.08.072
[45]

Lv H, Zhang F, Wang L, Shen Q, Li G, et al. 2024. Construction of 2D/1D Cu7S4 nanosheets/Mn0.3Cd0.7S nanorods heterojunction for highly efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science 653:1304−1316

doi: 10.1016/j.jcis.2023.09.137
[46]

Fan S, Liu H, Bi S, Gao C, Meng X, et al. 2021. Insight on the conversion reaction mechanism of NiCo2S4@CNTs as anode materials for lithium ion batteries and sodium ion batteries. Electrochimica Acta 388:138618

doi: 10.1016/j.electacta.2021.138618
[47]

Yang X, Cai T, Yao Z, Chao G. 2025. Novel NiCo2S4 nanorod arrays grown on carbon nanofibers as high-performance anodes for sodium-ion batteries. Ionics 31:1555−1560

doi: 10.1007/s11581-024-06057-4
[48]

Li J, Zhou J, Zhou Q, Wang X, Guo C, et al. 2021. Promoting the Na+-storage of NiCo2S4 hollow nanospheres by surfacing Ni–B nanoflakes. Journal of Materials Science & Technology 82:114−121

doi: 10.1016/j.jmst.2020.12.021
[49]

Liu B, Kong D, Wang Y, Lim YV, Huang S, et al. 2018. Three-dimensional hierarchical NiCo2S4@MoS2 heterostructure arrays for high performance sodium ion battery. FlatChem 10:14−21

doi: 10.1016/j.flatc.2018.07.002
[50]

Fan S, Liu H, Bi S, Meng X, Wang Q, et al. 2023. NiCo2S4 nanoparticles anchored in the 3D interpenetrating framework composed of GNs and CNTs toward enhanced sodium storage performance. Electrochimica Acta 441:141760

doi: 10.1016/j.electacta.2022.141760
[51]

Lim YV, Huang S, Hu J, Kong D, Wang Y, et al. 2019. Explicating the sodium storage kinetics and redox mechanism of highly pseudocapacitive binary transition metal sulfide via operando techniques and Ab initio evaluation. Small Methods 3:1900112

doi: 10.1002/smtd.201900112