[1]

Lu CD. 2023. The role of goats in the world: society, science, and sustainability. Small Ruminant Research 227:107056

doi: 10.1016/j.smallrumres.2023.107056
[2]

Voß K, Blaj I, Tetens JL, Thaller G, Becker D. 2022. Roan coat color in livestock. Animal Genetics 53:549−556

doi: 10.1111/age.13240
[3]

Galbraith H. 2010. Fundamental hair follicle biology and fine fibre production in animals. Animal 4:1490−1509

doi: 10.1017/S175173111000025X
[4]

Vasu M, Ahlawat S, Chhabra P, Sharma U, Arora R, et al. 2024. Genetic insights into fiber quality, coat color and adaptation in Changthangi and Muzzafarnagri sheep: a comparative skin transcriptome analysis. Gene 891:147826

doi: 10.1016/j.gene.2023.147826
[5]

Yao L, Bao A, Hong W, Hou C, Zhang Z, et al. 2019. Transcriptome profiling analysis reveals key genes of different coat color in sheep skin. PeerJ 7:e8077

doi: 10.7717/peerj.8077
[6]

Arenas-Báez P, Torres-Hernández G, Castillo-Hernández G, Hernández-Rodríguez M, Sánchez-Gutiérrez RA, et al. 2023. Coat color in local goats: influence on environmental adaptation and productivity, and use as a selection criterion. Biology 12(7):929

doi: 10.3390/biology12070929
[7]

Suzuki H. 2013. Evolutionary and phylogeographic views on Mc1r and Asip variation in mammals. Genes & Genetic Systems 88:155−164

doi: 10.1266/ggs.88.155
[8]

Zhang Y, Wu H, Yu L. 2021. Progress on coat color regulation mechanism and its association with the adaptive evolution in mammals. Hereditas 43:118−133 (in Chinese)

doi: 10.16288/j.yczz.20-390
[9]

Hornyak TJ, Jiang S, Guzmán EA, Scissors BN, Tuchinda C, et al. 2009. Mitf dosage as a primary determinant of melanocyte survival after ultraviolet irradiation. Pigment Cell & Melanoma Research 22:307−318

doi: 10.1111/j.1755-148X.2009.00551.x
[10]

Jackson PJ, Douglas NR, Chai B, Binkley J, Sidow A, et al. 2006. Structural and molecular evolutionary analysis of Agouti and Agouti-related proteins. Chemistry & Biology 13:1297−1305

doi: 10.1016/j.chembiol.2006.10.006
[11]

Henkel J, Dubacher A, Bangerter E, Herren U, Ammann P, et al. 2021. Introgression of ASIP and TYRP1 Alleles explains coat color variation in Valais goats. Journal of Heredity 112:452−457

doi: 10.1093/jhered/esab024
[12]

Song X, Liu L, Pan H, Zhao J, Jia Y, et al. 2021. Cloning, SNPs screening and mRNA differential expression analysis of TYR Gene in skin of mink (Neovison vison). Acta Veterinaria et Zootechnica Sinica 52:66−76

doi: 10.11843/j.issn.0366-6964.2021.007
[13]

Xiong Q, Tao H, Zhang N, Zhang L, Wang G, et al. 2020. Skin transcriptome profiles associated with black- and white-coated regions in Boer and Macheng black crossbred goats. Genomics 112:1853−1860

doi: 10.1016/j.ygeno.2019.10.019
[14]

Bhat B, Singh A, Iqbal Z, Kaushik JK, Rao AR, et al. 2019. Comparative transcriptome analysis reveals the genetic basis of coat color variation in pashmina goat. Scientific Reports 9:6361

doi: 10.1038/s41598-019-42676-y
[15]

Ji XY, Wang JX, Liu B, Zheng ZQ, Fu SY, et al. 2016. Comparative transcriptome analysis reveals that a ubiquitin-mediated proteolysis pathway is important for primary and secondary hair follicle development in cashmere goats. PLoS One 11:e0156124

doi: 10.1371/journal.pone.0156124
[16]

Wei P, SUREATI·Aiermitan, AISIKAER·Tuerxun, Gong P. 2025. Influence of skin hair follicles of fine wool sheep and cashmere goats on wool traits. Grass-Feeding Livestock 2025:22−27 (in Chinese)

doi: 10.16863/j.cnki.1003-6377.2025.03.004
[17]

Li X, Fan Y, Qiao X, Zhang L, Wang F, et al. 2020. Research progress on diversity of hair-coat types in cashmere goats. China Animal Husbandry &Veterinary Medicine 47:1130−1139 (in Chinese)

doi: 10.16431/j.cnki.1671-7236.2020.04.018
[18]

Wang W, Li Z, Xie G, Li X, Wu Z, et al. 2023. Convergent genomic signatures of cashmere traits: evidence for natural and artificial selection. International Journal of Molecular Sciences 24(2):1165

doi: 10.3390/ijms24021165
[19]

Zhao J, Zhang J, Chhen Z, Xiao M, Zhao Y. 2025. Whole-transcriptome RNA sequencing reveals global expression dynamics and ceRNA regulatory networks related to hair follicle development and melanogenesis in goats. Animal Bioscience 38(9):1841−1857

doi: 10.5713/ab.24.0617
[20]

Zhang JP, Xiao M, Fang JB, Huang DL, Zhao YJ. 2025. Phenotypic, transcriptomic, and genomic analyses reveal the spatiotemporal patterns and associated genes of coarse hair density in goats. Zoological Research 46:825−840

doi: 10.24272/j.issn.2095-8137.2025.034
[21]

Qin Y, Xu Y, Zhang Y, Gu M, Cai W, et al. 2023. Transcriptomics analysis of cashmere fineness functional genes. Animal Biotechnology 34:1583−1593

doi: 10.1080/10495398.2022.2042306
[22]

Li Y, Song S, Zhang Z, Liu X, Zhang Y, et al. 2022. A deletion variant within the FGF5 gene in goats is associated with gene expression levels and cashmere growth. Animal Genetics 53:657−664

doi: 10.1111/age.13239
[23]

Bai WL, Wang JJ, Yin RH, Dang YL, Wang ZY, et al. 2017. Molecular characterization of HOXC8 gene and methylation status analysis of its exon 1 associated with the length of cashmere fiber in Liaoning cashmere goat. Genetica 145:115−126

doi: 10.1007/s10709-017-9950-5
[24]

Zhao J, Ding Q, Li L, Kalds P, Zhou S, et al. 2022. Deletions in the KAP6-1 gene are associated with fiber traits in cashmere-producing goats. Animal Biotechnology 33:1198−1204

doi: 10.1080/10495398.2021.1881529
[25]

Zhang J, Deng C, Li J, Zhao Y. 2020. Transcriptome-based selection and validation of optimal house-keeping genes for skin research in goats (Capra hircus). BMC Genomics 21:493

doi: 10.1186/s12864-020-06912-4
[26]

Xiang B, Li Y, Li J, Li J, Jiang H, et al. 2023. MiR-19 3b regulated the formation of coat colors by targeting WNT10A and GNAI2 in cashmere goats. Animal Biotechnology 34:796−804

doi: 10.1080/10495398.2021.1998089
[27]

Song X, Xu C, Liu Z, Yue Z, Liu L, et al. 2017. Comparative transcriptome analysis of mink (Neovison vison) skin reveals the key genes involved in the melanogenesis of black and white coat colour. Scientific Reports 7:12461

doi: 10.1038/s41598-017-12754-0
[28]

Henkel J, Saif R, Jagannathan V, Schmocker C, Zeindler F, et al. 2019. Selection signatures in goats reveal copy number variants underlying breed-defining coat color phenotypes. PLoS Genet 15:e1008536

doi: 10.1371/journal.pgen.1008536
[29]

Ren H, Wang G, Jiang J, Li J, Fu L, et al. 2017. Comparative transcriptome and histological analyses provide insights into the prenatal skin pigmentation in goat (Capra hircus). Physiological Genomics 49:703−711

doi: 10.1152/physiolgenomics.00072.2017
[30]

Lai W, Hu M, Zhu W, Yu F, Bai C, et al. 2019. A 4-bp deletion in the ASIP gene is associated with the recessive black coat colour in domestic guinea pigs (Cavia porcellus). Animal Genetics 50:190−191

doi: 10.1111/age.12766
[31]

Cao W, Zhou X, McCallum NC, Hu Z, Ni QZ, et al. 2021. Unraveling the structure and function of melanin through synthesis. Journal of the American Chemical Society 143:2622−2637

doi: 10.1021/jacs.0c12322
[32]

Song Y, Xu Y, Deng J, Chen M, Lu Y, et al. 2017. CRISPR/Cas9-mediated mutation of tyrosinase (Tyr) 3' UTR induce graying in rabbit. Scientific Reports 7:1569

doi: 10.1038/s41598-017-01727-y
[33]

Bissig C, Rochin L, Van Niel G. 2016. PMEL amyloid fibril formation: the bright steps of pigmentation. International Journal of Molecular Sciences 17(9):1438

doi: 10.3390/ijms17091438
[34]

Wang J, Fan T, Du Z, Xu L, Chen Y, et al. 2023. Genome-wide association analysis identifies the PMEL gene affecting coat color and birth weight in Simmental × Holstein. Animals 13(24):3821

doi: 10.3390/ani13243821
[35]

Hellström AR, Watt B, Fard SS, Tenza D, Mannström P, et al. 2011. Inactivation of pmel alters melanosome shape but has only a subtle effect on visible pigmentation. PLoS Genetics 7:e1002285

doi: 10.1371/journal.pgen.1002285
[36]

Apar R, Ye X, Lv X. 2024. Transcriptome-based screening and validation of key genes for wool color in cashmere goats. Genes & Genomics 46:1239−1252

doi: 10.1007/s13258-024-01562-2
[37]

Cook AL, Chen W, Thurber AE, Smit DJ, Smith AG, et al. 2009. Analysis of cultured human melanocytes based on polymorphisms within the SLC45A2/MATP, SLC24A5/NCKX5, and OCA2/P loci. Journal of Investigative Dermatology 129:392−405

doi: 10.1038/jid.2008.211
[38]

Cheli Y, Luciani F, Khaled M, Beuret L, Bille K, et al. 2009. αMSH and cyclic AMP elevating agents control melanosome pH through a protein kinase A-independent mechanism. Journal of Biological Chemistry 284:18699−18706

doi: 10.1074/jbc.M109.005819
[39]

Wu D, Fan J, Pang Y, Wen B, Li W, et al. 2025. Identification and expression patterns of critical genes related to coat color in cashmere goats. Genes 16(2):222

doi: 10.3390/genes16020222
[40]

Shirokova V, Biggs LC, Jussila M, Ohyama T, Groves AK, et al. 2016. Foxi3 deficiency compromises hair follicle stem cell specification and activation. Stem Cells 34:1896−1908

doi: 10.1002/stem.2363
[41]

Wu B, Pratt CH, Potter CS, Silva KA, Kennedy V, et al. 2013. R164C mutation in FOXQ1 H3 domain affects formation of the hair medulla. Experimental Dermatology 22:234−236

doi: 10.1111/exd.12106
[42]

Luo LY, Wu H, Zhao LM, Zhang YH, Huang JH, et al. 2025. Telomere-to-telomere sheep genome assembly identifies variants associated with wool fineness. Nature Genetics 57:218−230

doi: 10.1038/s41588-024-02037-6
[43]

Fernandez-Guerrero M, Yakushiji-Kaminatsui N, Lopez-Delisle L, Zdral S, Darbellay F, et al. 2020. Mammalian-specific ectodermal enhancers control the expression of Hoxc genes in developing nails and hair follicles. Proceedings of the National Academy of Sciences of the United States of America 117:30509−30519

doi: 10.1073/pnas.2011078117
[44]

Zhang Y, Li J, Yin J, Gao A, Zhang W, et al. 2010. Expressed on hair follicle of Homeobox gene in inner mongolian cashmere goat. China Animal Husbandry & Veterinary Medicine 37:128−130

[45]

Awgulewitsch A. 2003. Hox in hair growth and development. Naturwissenschaften 90:193−211

doi: 10.1007/s00114-003-0417-4
[46]

Qiu W, Lei M, Tang H, Yan H, Wen X, et al. 2016. Hoxc13 is a crucial regulator of murine hair cycle. Cell and Tissue Research 364:149−158

doi: 10.1007/s00441-015-2312-7
[47]

Liu N, Bu R, He J, Cheng M, Liu K, et al. 2014. Effects of Hox Gene Family on Wool Traits of Fine-wool Sheep. Chinese Journal of Animal Science 23:6−10

doi: 10.3969/j.issn.0258-7033.2014.23.002
[48]

Botchkarev VA, Fessing MY. 2005. Edar signaling in the control of hair follicle development. Journal of Investigative Dermatology Symposium Proceedings 10:247−251

doi: 10.1111/j.1087-0024.2005.10129.x
[49]

Verhelst K, Gardam S, Borghi A, Kreike M, Carpentier I, et al. 2015. XEDAR activates the non-canonical NF-κB pathway. Biochemical and Biophysical Research Communications 465:275−280

doi: 10.1016/j.bbrc.2015.08.019
[50]

Zhang Y, Tomann P, Andl T, Gallant NM, Huelsken J, et al. 2009. Reciprocal requirements for EDA/EDAR/NF-κB and Wnt/β-catenin signaling pathways in hair follicle induction. Developmental Cell 17:49−61

doi: 10.1016/j.devcel.2009.05.011
[51]

Kwack MH, Kim JC, Kim MK. 2019. Ectodysplasin-A2 induces apoptosis in cultured human hair follicle cells and promotes regression of hair follicles in mice. Biochemical and Biophysical Research Communications 520:428−433

doi: 10.1016/j.bbrc.2019.10.031
[52]

Wang X, Cai B, Zhou J, Zhu H, Niu Y, et al. 2016. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS One 11:e0164640

doi: 10.1371/journal.pone.0164640
[53]

Zhang X, Li W, Liu C, Peng X, Lin J, et al. 2017. Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9. Scientific Reports 7:8149

doi: 10.1038/s41598-017-08636-0
[54]

Hao F, Yan W, Li X, Wang H, Wang Y, et al. 2018. Generation of cashmere goats carrying an EDAR gene mutant using CRISPR-Cas9-mediated genome editing. International Journal of Biological Sciences 14:427−436

doi: 10.7150/ijbs.23890
[55]

Hu X, Hao F, Li X, Xun Z, Gao Y, et al. 2021. Generation of VEGF knock-in cashmere goat via the CRISPR/Cas9 system. International Journal of Biological Sciences 17:1026−1040

doi: 10.7150/ijbs.55559
[56]

Wang X, Yu H, Lei A, Zhou J, Zeng W, et al. 2015. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Scientific Reports 5:13878

doi: 10.1038/srep13878