[1]

Fang J, Chen Z, Yu Z, Shan S, Hou Y, et al. 2025. Biochar suppresses conjugative transfer of antibiotic resistance genes in manure-amended soils. The ISME Journal 19:wraf187

doi: 10.1093/ismejo/wraf187
[2]

Zhou X, Shi Y, Lu Y, Song S, Wang C, et al. 2024. Ecological risk assessment of commonly used antibiotics in aquatic ecosystems along the coast of China. Science of The Total Environment 935:173263

doi: 10.1016/j.scitotenv.2024.173263
[3]

Liu N, Jin X, Johnson AC, Zhou S, Liu Y, et al. 2025. Pharmaceutical and personal care products (PPCPs) in global surface waters: risk and drivers. Environmental Science & Technology 59:19146−19159

doi: 10.1021/acs.est.5c05659
[4]

Li S, Zhang Q, Chen M, Strokal M, Kroeze C, et al. 2025. Antibiotics sources, concentrations, and risk of antimicrobial resistance selection in the Three Gorges Reservoir Basin, China. Environmental Science & Technology 59:19398−19413

doi: 10.1021/acs.est.5c00740
[5]

Ocampo-Pérez R, Rivera-Utrilla J, Gómez-Pacheco C, Sánchez-Polo M, López-Peñalver JJ. 2012. Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase. Chemical Engineering Journal 213:88−96

doi: 10.1016/j.cej.2012.09.072
[6]

Zhao L, Li Q, Wang H, Zhou Z, Li N, et al. 2024. Enhanced adsorptive removal of tetracycline by phosphomolybdic acid-modified low-temperature sludge biochar. Langmui 40:751−760

doi: 10.1021/acs.langmuir.3c02973
[7]

Yao J, Wang H, Fang J, Shan S, Joseph SD, et al. 2025. Distribution hotspots, formation mechanisms, and ecological effects of reactive oxygen species in soil and sediment: a critical review. Environmental Science & Technology 59:13551−13565

doi: 10.1021/acs.est.5c00581
[8]

Jia Y, Ou Y, Khanal SK, Sun L, Shu WS, et al. 2024. Biochar-based strategies for antibiotics removal: mechanisms, factors, and application. ACS ES&T Engineering 4:1256−1274

doi: 10.1021/acsestengg.3c00605
[9]

Gu C, Karthikeyan KG. 2005. Interaction of tetracycline with aluminum and iron hydrous oxides. Environmental Science & Technology 39:2660−2667

doi: 10.1021/es048603o
[10]

Tolls J. 2001. Sorption of veterinary pharmaceuticals in soils: a review. Environmental Science & Technology 35:3397−3406

doi: 10.1021/es0003021
[11]

Yao J, Zeng X, Wang Z. 2017. Enhanced degradation performance of sulfisoxazole using peroxymonosulfate activated by copper-cobalt oxides in aqueous solution: kinetic study and products identification. Chemical Engineering Journal 330:345−354

doi: 10.1016/j.cej.2017.07.155
[12]

Chen W, Qian C, Liu XY, Yu HQ. 2014. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and TiO2 nanoparticles. Environmental Science & Technology 48:11119−11126

doi: 10.1021/es502502n
[13]

Yao J, Yu Y, Qu R, Chen J, Huo Z, et al. 2020. Fe-activated peroxymonosulfate enhances the degradation of dibutyl phthalate on ground quartz sand. Environmental Science & Technology 54:9052−9061

doi: 10.1021/acs.est.0c00793
[14]

Liu H, Yao J, Wang L, Wang X, Qu R, et al. 2019. Effective degradation of fenitrothion by zero-valent iron powder (Fe0) activated persulfate in aqueous solution: kinetic study and product identification. Chemical Engineering Journal 358:1479−1488

doi: 10.1016/j.cej.2018.10.153
[15]

Saeedimasine M, Rahmani R, Lyubartsev AP. 2024. Biomolecular adsorption on nanomaterials: combining molecular simulations with machine learning. Journal of Chemical Information and Modeling 64:3799−3811

doi: 10.1021/acs.jcim.3c01606
[16]

Cazalbou S, Bertrand G, Drouet C. 2015. Tetracycline-loaded biomimetic apatite: an adsorption study. The Journal of Physical Chemistry B 119:3014−3024

doi: 10.1021/jp5116756
[17]

Zeng X, Qu R, Feng M, Chen J, Wang L, et al. 2016. Photodegradation of polyfluorinated dibenzo-p-dioxins in organic solvents: experimental and theoretical studies. Environmental Science & Technology 50:8128−8134

doi: 10.1021/acs.est.6b02682
[18]

Wang H, Yao J, Li M, Fang J, Shan S. 2026. The behaviors and influencing factors of reactive oxygen species generation at the soil-water interface containing biochar under simulated solar illumination conditions. Acta Pedologica Sinica 00:1−12

[19]

Ji L, Chen W, Duan L, Zhu D. 2009. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environmental Science & Technology 43:2322−2327

doi: 10.1021/es803268b
[20]

Sieler G, Schweitzer-Stenner R, Holtz JSW, Pajcini V, Asher SA. 1999. Different conformers and protonation states of dipeptides probed by polarized Raman, UV−resonance Raman, and FTIR spectroscopy. The Journal of Physical Chemistry B 103:372−384

doi: 10.1021/jp9825462
[21]

Qu X, Fu H, Mao J, Ran Y, Zhang D, et al. 2016. Chemical and structural properties of dissolved black carbon released from biochars. Carbon 96:759−767

doi: 10.1016/j.carbon.2015.09.106
[22]

Keiluweit M, Nico PS, Johnson MG, Kleber M. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology l 44:1247−1253

doi: 10.1021/es9031419
[23]

Li S, Zhu Y, Zhong G, Huang Y, Jones KC. 2024. Comprehensive assessment of environmental emissions, fate, and risks of veterinary antibiotics in China: an environmental fate modeling approach. Environmental Science & Technology 58:5534−5547

doi: 10.1021/acs.est.4c00993
[24]

Kamel AM, Brown PR, Munson B. 1999. Electrospray ionization mass spectrometry of tetracycline, oxytetracycline, chlorotetracycline, minocycline, and methacycline. Analytical Chemistry 71:968−977

doi: 10.1021/ac9807114
[25]

Kazmi SAR, Qureshi MZ, Ali S, Masson JF. 2019. In vitro drug release and biocatalysis from pH-responsive gold nanoparticles synthesized using doxycycline. Langmuir 35:16266−16274

doi: 10.1021/acs.langmuir.9b02420
[26]

Liu K, Niu J, Liu L, Tian F, Nie H, et al. 2023. LUMO-mediated Se and HOMO-mediated Te nanozymes for selective redox biocatalysis. Nano Letters 23:5131−5140

doi: 10.1021/acs.nanolett.3c01068
[27]

Li XB, Wang HY, Lv R, Wu WD, Luo JS, et al. 2009. Correlations of the stability, static dipole polarizabilities, and electronic properties of yttrium clusters. The Journal of Physical Chemistry A 113:10335−10342

doi: 10.1021/jp904420z
[28]

Fu L, Wang J, Deng L, Cheng K, Ao X, et al. 2025. Bridging dissolved organic matter reactivity to ozonation catalysts for Cu@Al2O3 from the molecular level by machine learning. Environmental Science & Technology 59:23568−23580

doi: 10.1021/acs.est.5c07324