[1]
|
Castro-Muñoz R, Correa-Delgado M, Córdova-Almeida R, Lara-Nava D, Chávez-Muñoz M, et al. 2022. Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chemistry 370:130991 doi: 10.1016/j.foodchem.2021.130991
CrossRef Google Scholar
|
[2]
|
Shahnawaz, Pandey DK, Konjengbam M, Dwivedi P, Kaur P, et al. 2021. Biotechnological interventions of in vitro propagation and production of valuable secondary metabolites in Stevia rebaudiana. Applied Microbiology and Biotechnology 105(23):8593−614 doi: 10.1007/s00253-021-11580-9
CrossRef Google Scholar
|
[3]
|
Srivastava V, Chaturvedi R. 2022. An interdisciplinary approach towards sustainable and higher steviol glycoside production from in vitro cultures of Stevia rebaudiana. Journal of Biotechnology 358:76−91 doi: 10.1016/j.jbiotec.2022.08.018
CrossRef Google Scholar
|
[4]
|
Kumari S, Gautam G, Sukany G, Meshram MR. 2019. Impact of spacing and levels of nitrogen on growth and yield of stevia (Stevia rebaudiana Bertoni). Journal of Pharmacognosy and Phytotherapy 8:1878−81
Google Scholar
|
[5]
|
Cardello HMAB, Da Silva MAPA, Damasio MH. 1999. Measurement of the relative sweetness of stevia extract, aspartame and cyclamate/saccharin blend as compared to sucrose at different concentrations. Plant Foods for Human Nutrition 54(2):119−29 doi: 10.1023/a:1008134420339
CrossRef Google Scholar
|
[6]
|
Prakash I, Markosyan A, Bunders C. 2014. Development of next generation Stevia sweetener: Rebaudioside M. Foods 3(1):162−75 doi: 10.3390/foods3010162
CrossRef Google Scholar
|
[7]
|
Ahmad Khan S, Rahman LU, Verma R, Shanker K. 2015. Physical and chemical mutagenesis in Stevia rebaudiana: variant generation with higher UGT expression and glycosidic profile but with low photosynthetic capabilities. Acta Physiologiae Plantarum 38:4 doi: 10.1007/s11738-015-2003-8
CrossRef Google Scholar
|
[8]
|
Ahmad Khan S, Ur Rahman L, Shanker K, Singh M. 2014. Agrobacterium tumefaciens-mediated transgenic plant and somaclone production through direct and indirect regeneration from leaves in Stevia rebaudiana with their glycoside profile. Protoplasma 251(3):661−70 doi: 10.1007/s00709-013-0568-x
CrossRef Google Scholar
|
[9]
|
de Jesús Sanchéz-Cordova Á, Capataz-Tafur J, Barrera-Figueroa BE, López-Torres A, Sanchez-Ocampo PM, et al. 2019. Agrobacterium rhizogenes-mediated transformation enhances steviol glycosides production and growth in Stevia rebaudiana plantlets. Sugar Tech 21(3):398−406 doi: 10.1007/s12355-018-0681-4
CrossRef Google Scholar
|
[10]
|
Wu Q, La Hovary C, Chen HY, Li X, Eng H, et al. 2020. An efficient Stevia rebaudiana transformation system and in vitro enzyme assays reveal novel insights into UGT76G1 function. Scientific Reports 10:3773 doi: 10.1038/s41598-020-60776-y
CrossRef Google Scholar
|
[11]
|
Zheng J, Zhuang Y, Mao HZ, Jang IC. 2019. Overexpression of SrDXS1 and SrKAH enhances steviol glycosides content in transgenic Stevia plants. BMC Plant Biology 19:1 doi: 10.1186/s12870-018-1600-2
CrossRef Google Scholar
|
[12]
|
Li Y, Li Y, Wang Y, Chen L, Yan M, et al. 2016. Production of Rebaudioside A from Stevioside catalyzed by the engineered Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology 178(8):1586−98 doi: 10.1007/s12010-015-1969-4
CrossRef Google Scholar
|
[13]
|
Wang Y, Chen L, Li Y, Li Y, Yan M, et al. 2016. Efficient enzymatic production of rebaudioside A from stevioside. Bioscience, Biotechnology, and Biochemistry 80:67−73 doi: 10.1080/09168451.2015.1072457
CrossRef Google Scholar
|
[14]
|
Shu W, Zheng H, Fu X, Zhen J, Tan M, et al. 2020. Enhanced heterologous production of glycosyltransferase UGT76G1 by co-expression of endogenous prpD and malK in Escherichia coli and its transglycosylation application in production of rebaudioside. International Journal of Molecular Sciences 21(16):5752 doi: 10.3390/ijms21165752
CrossRef Google Scholar
|
[15]
|
Gold ND, Fossati E, Hansen CC, DiFalco M, Douchin V, et al. 2018. A combinatorial approach to study cytochrome P450 enzymes for de novo production of steviol glucosides in Baker's yeast. ACS Synthetic Biology 7(12):2918−29 doi: 10.1021/acssynbio.8b00470
CrossRef Google Scholar
|
[16]
|
Moon JH, Lee K, Lee JH, Lee PC. 2020. Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced production of steviol in Escherichia coli. Microbial Cell Factories 19:20 doi: 10.1186/s12934-020-1291-x
CrossRef Google Scholar
|
[17]
|
Gerwig GJ, Te Poele EM, Dijkhuizen L, Kamerling JP. 2016. Stevia Glycosides: Chemical and enzymatic modifications of their carbohydrate moieties to improve the sweet-tasting quality. In Advances in Carbohydrate Chemistry and Biochemistry, ed. Baker DC. Vol. 73. UK: Academic Press, Elsevier. pp. 1−72. https://doi.org/10.1016/bs.accb.2016.05.001
|
[18]
|
Chen L, Pan H, Cai R, Li Y, Jia H, et al. 2021. Bioconversion of Stevioside to Rebaudioside E Using Glycosyltransferase UGTSL2. Applied Biochemistry and Biotechnology 193(3):637−49 doi: 10.1007/s12010-020-03439-y
CrossRef Google Scholar
|
[19]
|
Dewitte G, Walmagh M, Diricks M, Lepak A, Gutmann A, et al. 2016. Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1. Journal of Biotechnology 233:49−55 doi: 10.1016/j.jbiotec.2016.06.034
CrossRef Google Scholar
|
[20]
|
Ping Q, Yang L, Jiang J, Yuan J, Ai S, et al. 2022. Efficient synthesis of rebaudioside D2 through UGT94D1-catalyzed regio-selective glycosylation. Carbohydrate Research 522:108687 doi: 10.1016/j.carres.2022.108687
CrossRef Google Scholar
|
[21]
|
Yang L, Ping Q, Yuan Z, Jiang J, Guo B, et al. 2023. Highly efficient synthesis of mono-β-1,6-Glucosylated Rebaudioside A derivative catalyzed by glycosyltransferase YjiC. Carbohydrate Research 523:108737 doi: 10.1016/j.carres.2022.108737
CrossRef Google Scholar
|
[22]
|
Zhang J, Tang M, Chen Y, Ke D, Zhou J, et al. 2021. Catalytic flexibility of rice glycosyltransferase OsUGT91C1 for the production of palatable steviol glycosides. Nature Communications 12(1):7030 doi: 10.1038/s41467-021-27144-4
CrossRef Google Scholar
|
[23]
|
Yang Z, Uhler B, Zheng T, Adams KM. 1991. Transfructosylation of rebaudioside A (a sweet glycoside of Stevia leaves) with Microbacterium β-fructofuranosidase. Chemical & Pharmaceutical Bulletin 39(8):2043−45 doi: 10.1248/cpb.39.2043
CrossRef Google Scholar
|
[24]
|
Yang Z, B Uhler, T Zheng, KM Adams. 2019. Enzymatic synthesis and characterization of a novel α-1→6-glucosyl Rebaudioside C derivative sweetener. Biomolecules 9(1):27 doi: 10.3390/biom9010027
CrossRef Google Scholar
|
[25]
|
Xu ZW, Li YQ, Wang YH, Bo Y, Ning ZX. 2009. Production of β-fructofuranosidase by Arthrobacter sp. and its application in the modification of Stevioside and Rebaudioside A. Food Technology and Biotechnology 47:137−43
Google Scholar
|
[26]
|
Spohner SC, Czermak P. 2016. Enzymatic production of prebiotic fructo-oligosteviol glycosides. Journal of Molecular Catalysis B: Enzymatic 131:79−84 doi: 10.1016/j.molcatb.2016.06.006
CrossRef Google Scholar
|
[27]
|
Prakash I, Chaturvedula VSP. 2014. Structures of some novel α-glucosyl diterpene glycosides from the glycosylation of Steviol glycosides. Molecules 19:20280−94 doi: 10.3390/molecules191220280
CrossRef Google Scholar
|
[28]
|
Wang W, Sun Y, Peng P, Gu G, Du G, et al. 2021. Two-step enzymatic conversion of Rebaudioside A into a Mono-α-1,4-Glucosylated Rebaudioside A Derivative. Journal of Agricultural and Food Chemistry 69:2522−30 doi: 10.1021/acs.jafc.0c07452
CrossRef Google Scholar
|
[29]
|
Wellmann J, Wilms J, Hartmann B, Zirpel B, Brückner SI, et al. 2023. Novel α-glycosyl compounds from glycosylation of rubusoside. Food Chemistry 406:135033 doi: 10.1016/j.foodchem.2022.135033
CrossRef Google Scholar
|
[30]
|
Muñoz-Labrador A, Azcarate S, Lebrón-Aguilar R, Quintanilla-López JE, Galindo-Iranzo P, et al. 2020. Transglycosylation of steviol glycosides and Rebaudioside A: Synthesis Optimization structural analysis and sensory profiles. Foods 9:1753 doi: 10.3390/foods9121753
CrossRef Google Scholar
|
[31]
|
Yu X, Yang J, Li B, Yuan H. 2015. High efficiency transformation of stevioside into a single mono-glycosylated product using a cyclodextrin glucanotransferase from Paenibacillus sp. CGMCC 5316. World Journal of Microbiology and Biotechnology 31:1983−991 doi: 10.1007/s11274-015-1947-6
CrossRef Google Scholar
|
[32]
|
Gerwig GJ, te Poele EM, Dijkhuizen L, Kamerling JP. 2017. Structural analysis of rebaudioside A derivatives obtained by Lactobacillus reuteri 180 glucansucrase-catalyzed trans-α-glucosylation. Carbohydrate Research 440-441:51−62 doi: 10.1016/j.carres.2017.01.008
CrossRef Google Scholar
|
[33]
|
Yan Z, Cao X, Yang X, Yang S, Xu L, et al. 2021. A novel β-glucosidase from Chryseobacterium scophthalmum 1433 for efficient rubusoside production from stevioside. Frontiers in Microbiology 12:744914 doi: 10.3389/fmicb.2021.744914
CrossRef Google Scholar
|
[34]
|
Lan Q, Tang T, Yin Y, Qu X, Wang Z, et al. 2019. Highly specific sophorose β-glucosidase from Sphingomonas elodea ATCC 31461 for the efficient conversion of stevioside to rubusoside. Food Chemistry 295:563−68 doi: 10.1016/j.foodchem.2019.05.164
CrossRef Google Scholar
|
[35]
|
Kang HJ, Lee HN, Hong SJ, Park BR, Ameer K, et al. 2022. Synthesis and characteristics of a rebaudioside-A like compound as a potential non-caloric natural sweetener by Leuconostoc kimchii dextransucrase. Food Chemistry 366:130623 doi: 10.1016/j.foodchem.2021.130623
CrossRef Google Scholar
|
[36]
|
Chaturvedula VSP, Upreti M, Prakash I. 2011. Structures of the novel α-glucosyl linked diterpene glycosides from Stevia rebaudiana. Carbohydrate Research 346(13):2034−38 doi: 10.1016/j.carres.2011.06.023
CrossRef Google Scholar
|
[37]
|
Zerva A, Chorozian K, Kritikou AS, Thomaidis NS, Topakas E. 2021. β-glucosidase and β-galactosidase-Mediated transglycosylation of steviol glycosides utilizing industrial byproducts. Frontiers in Bioengineering and Biotechnology 9:685099 doi: 10.3389/fbioe.2021.685099
CrossRef Google Scholar
|
[38]
|
Wan HD, Xia YM. 2015. Enzymatic transformation of stevioside using a β-galactosidase from Sulfolobus sp. Food & Function 6(10):3291−95 doi: 10.1039/c5fo00631g
CrossRef Google Scholar
|
[39]
|
Kitahata S, Ishikawa H, Miyata T, Tanaka O. 1989. Production of Rubusoside Derivatives by Transgalactosylation of Various α-Galactosidases. Agricultural and Biological Chemistry 53(11):2929−34 doi: 10.1080/00021369.1989.10869769
CrossRef Google Scholar
|
[40]
|
Williams SJ, Withers SG. 2002. Glycosynthases: Mutant glycosidases for glycoside synthesis. Australian Journal of Chemistry 55:3−12 doi: 10.1071/ch02005
CrossRef Google Scholar
|
[41]
|
aijes M, Saura-Valls M, Pérez X, Conti M, Planas A. 2006. Acceptor-dependent regioselectivity of glycosynthase reactions by Streptomyces E383A β-glucosidase. Carbohydrate Research 341(12):2055−65 doi: 10.1016/j.carres.2006.04.049
CrossRef Google Scholar
|
[42]
|
Mayer C, Zechel DL, Reid SP, Warren RAJ, Withers SG. 2000. The E358S mutant of Agrobacterium sp. beta-glucosidase is a greatly improved glycosynthase. FEBS Letters 466(1):40−44 doi: 10.1016/s0014-5793(99)01751-2
CrossRef Google Scholar
|
[43]
|
Li C, Zhu S, Ma C, Wang LX. 2017. Designer α1,6-fucosidase mutants enable direct core fucosylation of intact N-glycopeptides and N-glycoproteins. Journal of the American Chemical Society 139(42):15074−87 doi: 10.1021/jacs.7b07906
CrossRef Google Scholar
|